Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

MASGQF with application to SINS alignment

MASGQF with application to SINS alignment

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To effectively improve the computation efficiency in the strapdown inertial navigation system (SINS) alignment process, the authors propose a marginalised adaptive sparse-grid quadrature filter (MASGQF). The filtering method combines the virtues of marginalisation technique and accuracy level switching structure to decrease the computational burden and improve the filtering precision simultaneously. With the adaptation criterion and the predefined tolerance value, different integration rules corresponding to the different accuracy levels nested in the proposed filtering method can be adjusted autonomously. It is proved that the MASGQF is exponentially bounded by theoretical analysis. The performance comparison of different filtering methods is demonstrated by the numerical results of the simulation and offline experiment. On the basis of the data performance of the online test, the validity of the proposed MASGQF is verified in the SINS alignment application.

References

    1. 1)
      • 2. Chang, L., Li, J., Chen, S.: ‘Initial alignment by attitude estimation for strapdown inertial navigation systems’, IEEE Trans. Instrum. Meas., 2015, 64, (3), pp. 784794.
    2. 2)
      • 23. Titterton, D.H., Weston, J.L.: ‘Strapdown inertial navigation technology’ (AIAA, USA, 2004, 2nd edn.).
    3. 3)
      • 30. Steven, M.K.: ‘Fundamentals of statistical signal processing’, vol. 3 (PTR Prentice-Hall, USA, 1993).
    4. 4)
      • 20. Baek, K., Bang, H.: ‘Adaptive sparse-grid quadrature filter for spacecraft relative navigation’, Acta Astronaut., 2013, 87, (87), pp. 96106.
    5. 5)
      • 5. Wu, Y., Wang, J., Hu, D.: ‘A new technique for INS/GNSS attitude and parameter estimation using online optimization’, IEEE Trans. Signal Process., 2014, 62, (10), pp. 26422655.
    6. 6)
      • 15. Arasaratnam, I., Haykin, S., Elliott, R.J.: ‘Discrete-time non-linear filtering algorithms using Gauss–Hermite quadrature’, Proc. IEEE, 2007, 95, pp. 953977.
    7. 7)
      • 11. Zhao, Y.: ‘Cubature + extended hybrid Kalman filtering method and its application in PPP/IMU tightly coupled navigation systems’, IEEE Sens. J., 2015, 15, (12), pp. 69736985.
    8. 8)
      • 7. Li, W., Wang, J., Lu, L., et al: ‘A novel scheme for DVL-aided SINS in-motion alignment using UKF techniques’, Sensors, 2013, 13, (1), pp. 10461063.
    9. 9)
      • 28. Xiong, K., Zhang, H., Chan, C.: ‘Performance evaluation of UKF-based non-linear filtering’, Automatica, 2006, 42, (2), pp. 261270.
    10. 10)
      • 21. Schon, T., Gustafsson, F., Nordlund, P.J.: ‘Marginalized particle filters for mixed linear/non-linear state-space models’, IEEE Trans. Signal Process., 2005, 53, (7), pp. 22792289.
    11. 11)
      • 19. Zhao, R., Zhu, Y., Chen, J.: ‘Target tracking algorithm based on adaptive strong tracking particle filter’, IET Sci. Meas. Technol., 2016, 10, (7), pp. 704710.
    12. 12)
      • 1. Nemra, A., Aouf, N.: ‘Robust INS/GPS sensor fusion for UAV localization using SDRE non-linear filtering’, IEEE Sens. J., 2010, 10, (4), pp. 789798.
    13. 13)
      • 12. Arasaratnam, I., Haykin, S.: ‘Cubature Kalman filters’, IEEE Trans. Autom. Control, 2009, 54, (6), pp. 12541269.
    14. 14)
      • 14. Challa, S., Bar-Shalom, Y., Krishnamurthy, V.: ‘Non-linear filtering via generalized Edgeworth series and Gauss–Hermite quadrature’, IEEE Trans. Signal Process., 2000, 48, (6), pp. 18161820.
    15. 15)
      • 10. Ito, K., Xiong, K.: ‘Gaussian filters for non-linear filtering problems’, IEEE Trans. Autom. Control, 2000, 45, (5), pp. 910927.
    16. 16)
      • 4. Lu, J., Liang, S., Yang, L.: ‘Analytic coarse alignment and calibration for inertial navigation system on swaying base assisted by star sensor’, IET Sci. Meas. Technol., 2018, 12, (5), pp. 673677.
    17. 17)
      • 18. Straka, O., Simandl, M.: ‘A survey of sample size adaptation techniques for particle filters’. Proc. 15th IFAC Symp. System Identification, Saint-Malo, France, July 2009, pp. 13581363.
    18. 18)
      • 26. Heiss, F., Winschel, V.: ‘Likelihood approximation by numerical integration on sparse grids’, J. Econ., 2008, 144, (1), pp. 6280.
    19. 19)
      • 16. Jia, B., Xin, M., Cheng, Y.: ‘Sparse Gauss–Hermite quadrature filter with application to spacecraft attitude estimation’, J. Guid. Control Dyn., 2011, 34, (2), pp. 367379.
    20. 20)
      • 29. Reif, K., Gunther, S., Yaz, E., et al: ‘Stochastic stability of the discrete-time extended Kalman filter’, IEEE Trans. Autom. Control, 1999, 44, (4), pp. 714728.
    21. 21)
      • 13. Chandra, K.P.B., Gu, D.W., Postlethwaite, I.: ‘Square root cubature information filter’, IEEE Sens. J., 2013, 13, (2), pp. 750758.
    22. 22)
      • 3. Zhang, L., Yang, C., Chen, Q., et al: ‘Robust H-infinity CKF/KF hybrid filtering method for SINS alignment’, IET Sci. Meas. Technol., 2016, 10, (8), pp. 916925.
    23. 23)
      • 25. Sarkka, S., Nummenmaa, A.: ‘Recursive noise adaptive Kalman filtering by variational Bayesian approximations’, IEEE Trans. Autom. Control, 2009, 54, (3), pp. 596600.
    24. 24)
      • 27. Li, L., Xia, Y.: ‘Stochastic stability of the unscented Kalman filter with intermittent observations’, Automatica, 2012, 48, (5), pp. 978981.
    25. 25)
      • 22. Chang, L., Hu, B., Li, A., et al: ‘Strapdown inertial navigation system alignment based on marginalised unscented Kalman filter’, IET Sci. Meas. Technol., 2013, 7, (2), pp. 128138.
    26. 26)
      • 24. Yan, G., Yan, W., Xu, D.: ‘Application of simplified UKF in SINS initial alignment for large misalignment angles’, J. Chin. Inertial Technol., 2008, 16, (3), pp. 253264.
    27. 27)
      • 17. Jia, B., Xin, M., Cheng, Y.: ‘Sparse-grid quadrature non-linear filtering’, Automatica, 2012, 48, (2), pp. 327341.
    28. 28)
      • 9. Dash, P.K., Hasan, S., Panigrahi, B.K.: ‘Adaptive complex unscented Kalman filter for frequency estimation of time-varying signals’, IET Sci. Meas. Technol., 2010, 4, (2), pp. 93103.
    29. 29)
      • 6. Li, W., Wu, W., Wang, J., et al: ‘A new technique for INS/GNSS attitude and parameter estimation using online optimization’, J. Navig., 2013, 66, (2), pp. 181198.
    30. 30)
      • 8. Fang, J., Yang, S.: ‘Study on innovation adaptive EKF for in-flight alignment of airborne POS’, IEEE Trans. Instrum. Meas., 2011, 60, (4), pp. 13781388.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0317
Loading

Related content

content/journals/10.1049/iet-smt.2019.0317
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address