Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Accumulative effect of partial discharges at impulse voltage wave tail

Accumulative effect of partial discharges at impulse voltage wave tail

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study describes a technique for evaluating partial discharges at fast impulse voltages. Fast transient voltages are increasingly present in power equipment and industrial environments due to the ubiquitous application of power electronics switching devices. Special attention should be paid to the dangers caused by the accumulative effect of repetitive impulse voltages on electrical insulation. This study describes a method of analysing partial discharges occurring during impulse voltage stimuli. A repetitive train of pulses is applied to a dielectric specimen and the accumulated PD pattern is obtained. This study focuses on the reverse discharges which occur during the tail part of the impulse voltage waveform acquired in time-resolved mode. Investigations of the partial discharges in the wave tail can potentially lead to greater degradation of the insulation due to the formation of longer, repetitive sequence occurring along the decaying impulse voltage tail. Experiments were performed which investigated the influence of rise time, fall time and peak voltage on discharge pattern reshaping, intensity and time to inception on the tail. In the future, such an approach might be further developed for diagnostic applications and for extended factory tests.

References

    1. 1)
      • 41. Zhao, X., Yao, X., Guo, Z., et al: ‘Characteristics and development mechanisms of partial discharges in SF6 gas under impulse voltages’, IEEE Trans. Plasma Sci., 2011, 39, (2), pp. 668674.
    2. 2)
      • 39. Guastavino, G., Dardano, A., Torello, E.: ‘Measuring partial discharges under pulse voltage conditions’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (6), pp. 16401648.
    3. 3)
      • 30. Boggs, S.: ‘Analytical approach to breakdown under impulse conditions’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (1), pp. 9096.
    4. 4)
      • 19. Florkowski, M., Florkowska, B.: ‘Phase-resolved rise-time-based discrimination of partial discharges’, IET Gener. Transm. Distrib., 2009, 3, (1), pp. 115124.
    5. 5)
      • 4. Mitra, G., Salvage, B., Sakr, M.M: ‘Detection and measurement of discharges in gaseous cavities in solid dielectrics under impulse voltage conditions’, Proc. Inst. Electr. Eng., 1965, 112, (5), pp. 10561060.
    6. 6)
      • 7. Densley, R.J., Salvage, B.: ‘Partial discharges in gaseous cavities in solid dielectrics under impulse voltage conditions’, IEEE Trans. Electr. Insul., 1971, EI-6, (2), pp. 5462.
    7. 7)
      • 34. Hayakawa, N., Yoshitake, Y., Koshino, N., et al: ‘Impulse partial discharge characteristics and their mechanisms under non-uniform electric field in N2/SF6 gas mixtures’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 10351042.
    8. 8)
      • 14. Sun, P., Sima, W., Jiang, X., et al: ‘Review of accumulative failure of winding insulation subjected to repetitive impulse voltages’, IET High Volt., 2019, 4, (1), pp. 111.
    9. 9)
      • 27. Florkowska, B., Florkowski, M., Furgał, J., et al: ‘Influence of different voltage waveforms on PD formation in HV insulation systems’. IEEE Conf. on Electrical Insulation and Dielectric Phenomena, CEIDP, Virginia, USA, 2009, ISBN 978-1-4244-4559-2.
    10. 10)
      • 33. Mizuno, T., Liu, Y.S., Okada, M., et al: ‘Light emission in PE with a needle-like microvoid at bthe metal-polymer interface under impulse voltages’, IEEE Trans. Dielectr. Electr. Insul., 1998, 5, pp. 536540.
    11. 11)
      • 2. Sporn, P., Powel, C.A.: ‘Standard basic insulation levels’. National Electrical Manufacturers Association Report, NEMA pub No. 109, Joint Edition Electric Institute, 1941.
    12. 12)
      • 29. Illias, H.A., Tunio, M.A., Bakar, A.H.A., et al: ‘Partial discharge behaviours within a void-dielectric system under square waveform applied voltage stress’, IET Sci. Meas. Technol., 2014, 8, (2), pp. 8188.
    13. 13)
      • 5. Densley, R.J., Salvage, B.: ‘Electrical breakdown of small air gaps bounded by dielectric surfaces under impulse-voltage conditions’, Electron. Lett., 1966, 2, (11), pp. 430432.
    14. 14)
      • 1. Steinmetz, C.P.: ‘Note on the disruptive strength of dielectrics’. The 74th Meeting of AIEE, New York, 1893.
    15. 15)
      • 37. Florkowski, M., Florkowska, B., Zydron, P.: ‘Partial discharge echo obtained by chopped sequence’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (3), pp. 12941302.
    16. 16)
      • 11. Florkowski, M., Florkowska, B., Roehrich, J., et al: ‘Measurement and analysis of surface partial discharges at semi-square voltage waveforms’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (4), pp. 990996.
    17. 17)
      • 20. Fu, P., Zhao, Z., Li, X., et al: ‘Partial discharge measurement and analysis in PPIs’, IET Power Electron., 2019, 12, (1), pp. 138146.
    18. 18)
      • 21. Kaufhold, M., Aninger, H., Berth, M., et al: ‘Electrical stress and failure mechanism of the winding insulation in PWM-inverter-fed low voltage induction motors’, IEEE Trans. Ind. Electron., 2000, 47, pp. 396402.
    19. 19)
      • 12. Florkowski, M., Błaszczyk, P., Klimczak, P.: ‘Partial discharges in twisted-pair magnet wires subject to multilevel PWM pulses’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 22032210.
    20. 20)
      • 31. Ren, M., Dong, M., Liu, Y., et al: ‘Partial discharges in SF6 gas filled void under standard oscillating lightning and switching impulses in uniform and non-uniform background field’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (1), pp. 138148.
    21. 21)
      • 16. Florkowski, M., Florkowska, B.: ‘Distortion of partial-discharge images caused by high-voltage harmonics’, IEE Proc., Gener. Transm. Distrib., 2006, 153, (2), pp. 171180.
    22. 22)
      • 25. Florkowski, M., Florkowska, B., Zydron, P.: ‘Partial discharges in insulating systems of low voltage electric motors fed by power electronics—twisted-pair samples evaluation’, Energies, 2019, 12, (768), pp. 119.
    23. 23)
      • 28. Zhao, X.F., Yao, X., Guo, Z.F., et al: ‘Partial discharge characteristics and mechanism in voids at impulse voltages’, Meas. Sci. Technol., 2011, 22, pp. 16.
    24. 24)
      • 6. Densley, R.J.: ‘Partial discharges in electrical insulation under combined alternating and impulse voltage’, IEEE Trans. Electr. Insul., 1970, EI-5, (4), pp. 96103.
    25. 25)
      • 9. Fard, M.A., Mcmeekin, S.G., Reid, A.: ‘Partial discharge behaviour under operational and anomalous conditions in HVDC systems’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, pp. 14941502.
    26. 26)
      • 38. Florkowski, M., Florkowska, B., Włodek, R.: ‘Investigations on post partial discharge charge decay in void using chopped sequence’, IEEE Trans. Dielectr. Electr. Insul., 2017, 26, (6), pp. 38313838.
    27. 27)
      • 17. Kerkman, R.J., Leggate, D., Skibinski, G.: ‘Interaction of drive modulation and cable parameters on AC motor transients’, IEEE Trans. Ind. Appl., 1997, 33, pp. 722731.
    28. 28)
      • 8. Hammarstrom, T., Bengtsson, T., Blennow, J., et al: ‘Evidence for changing PD properties at short voltage rise times’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, pp. 16861692.
    29. 29)
      • 42. Wang, F., Qiu, Y., Pfeiffer, W., et al: ‘Insulator surface charge accumulation under impulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (5), pp. 847853.
    30. 30)
      • 26. Illias, H.A., Tunio, M.A., Mokhlis, H., et al: ‘Experiment and modeling of void discharges within dielectric insulation material under impulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 22522260.
    31. 31)
      • 22. IEC TS 60034-18-41: ‘Rotating electrical machines, qualification and type tests for type I electrical insulation system used in rotating electrical machines fed from voltage converters’, 2014.
    32. 32)
      • 32. Hayakawa, N., Okubo, H.: ‘Partial discharge characteristics of inverter-fed motor coil samples under AC and surge voltage conditions’, IEEE Electr. Insul. Mag., 2005, 21, (1), pp. 510.
    33. 33)
      • 10. Wheeler, J.C.G.: ‘Effects of converter pulses on the electrical insulation in low and medium voltage motors’, IEEE Electr. Insul. Mag., 2005, 21, pp. 2229.
    34. 34)
      • 35. Maeda, K., Kubo, T., Uchimura, T., et al: ‘Partial discharge inception voltage of enameled cellular wire under impulse voltage’. IEEE 2nd Int. Conf. on Dielectrics (ICD), Budapest, Hungary, 2018.
    35. 35)
      • 36. Grzybowski, S., Shresta, P., Cao, I.: ‘Aging phenomena of XLPE and EPR cable insulation energized by switching impulses’. Proc. of Int. Conf. on High Voltage Engineering and Application, Chongqing, China, 2008, pp. 422425.
    36. 36)
      • 24. Haq, S.U., Jayaram, S.H., Cherney, E.A.: ‘Insulation problems in medium-voltage stator coils under fast repetitive voltage pulses’, IEEE Trans. Ind. Appl., 2008, 44, pp. 10041012.
    37. 37)
      • 3. Peek, F.W.: ‘The effect of transient voltage on dielectrics’. Panama-Pacific Convention of AIEE, San Francisco, 1915.
    38. 38)
      • 40. Lindell, E., Bengtsson, T., Blennow, J., et al: ‘Measurement of partial discharges at rapidly changing voltages’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (3), pp. 823831.
    39. 39)
      • 23. IEC TS 61934: ‘Electrical insulating materials and systems – electrical measurement of partial discharges’, 2011.
    40. 40)
      • 18. Suresh, G., Toliyat, H.A., Rendusara, D.A., et al: ‘Predicting the transient effects of PWM voltage waveform on the stator windings of random wound induction motors’, IEEE Trans. Power Electron., 1999, 14, pp. 2330.
    41. 41)
      • 13. Khanali, M., Jayaram, S.: ‘A study on PD activities of oil-impregnated paper pulse voltages using gas analysis’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 25032510.
    42. 42)
      • 15. Hammarstrom, T.: ‘A measurement set-up method to evaluate motor winding quality and winding insulation by exploring discharge characteristics’. 21st Int. Conf. on Electrical Machines and Systems (ICEMS), Jeju-do, South Korea, 2018, pp. 678683.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0310
Loading

Related content

content/journals/10.1049/iet-smt.2019.0310
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address