Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Development of multi-parameter online monitoring equipment for EHV transformer bushing

To diagnose the running state of bushing and avoid serious power grid accidents, online multi-parameter monitoring equipment for dissolved hydrogen, oil pressure and temperature in bushing oil was developed. The equipment includes three units: signal acquisition, control cabinet and data analysis. A new hydrogen sensor without oil–gas separation membrane and based on palladium alloy film technology was developed. A three-in-one sensor for hydrogen, oil temperature and pressure monitoring has been developed, which has the advantages of miniaturisation, lightweight and easy installation. Test results show the hydrogen measurement range of the sensor is 0–5000 ppm, and the accuracy can reach 10% or 15 ppm (with larger values). The pressure measurement range is 0–1.0 MPa, the resolution is 0.1 kPa, and the accuracy can reach 0.25 grade. The temperature measurement range is −40 to 105°C, and the accuracy is ±1°C. The measurement performance of the device fully meets the requirement of online monitoring of transformer bushing. The equipment has been put into operation in a 330 kV substation, which can monitor the bushing status online and help eliminate the early latent fault of bushing in the weak budding state.

References

    1. 1)
      • 14. Wang, D., Zhou, L., Li, H., et al: ‘Moisture estimation for oil-immersed bushing based on FDS method: at a reference temperature’, IET Gener. Transm. Distrib., 2018, 12, (10), pp. 24802486.
    2. 2)
      • 11. Maina, R., Tumiatti, V., Pompili, M., et al: ‘Dielectric loss characteristics of copper-contaminated transformer oils’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 16731677.
    3. 3)
      • 1. Setayeshmehr, A., Akbari, A., Borsi, H., et al: ‘On-line monitoring and diagnoses of power transformer bushings’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (3), pp. 608615.
    4. 4)
      • 4. Zhang, D., Zhao, H., Hao, Y., et al: ‘Study on FDS characteristics of oil-immersed paper insulation bushing under non-uniform moisture content’, IET Sci. Meas. Technol., 2018, 12, (5), pp. 691697.
    5. 5)
      • 2. Hashemnia, N., Abu-Siada, A., Islam, S.: ‘Detection of power transformer bushing faults and oil degradation using frequency response analysis’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (1), pp. 222229.
    6. 6)
      • 6. Du, B., Chang, R., Zhu, W., et al: ‘Temperature-dependent surface charge and discharge behaviour of converter transformer oil–paper insulation under DC voltage’, IET Sci. Meas. Technol., 2019, 13, (1), pp. 2934.
    7. 7)
      • 16. Huberta, T., Boon-Brettb, L., Blackb, G., et al: ‘Hydrogen sensors-A review’, Sens. Actuators B Chemical, 2011, 157, (2), pp. 329352.
    8. 8)
      • 5. Zhang, Y., Guo, Y.: ‘Experimental studies of permeability devices used for on-line fault detecting in high voltage instrument transformer’, J. Tsinghua Univ. (Sci & Tech), 1995, 35, (1), pp. 6064.
    9. 9)
      • 15. Mikulecky, A., Stih, Z.: ‘Influence of temperature, moisture content and ageing on oil impregnated paper bushings insulation’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (4), pp. 14211427.
    10. 10)
      • 17. Hughes, R.C., Schubert, W.K., Buss, R.J.: ‘Solid-state hydrogen sensors using palladium-nickel alloys: effect of alloy composition on sensor response’, J. Electrochem. Soc., 1995, 142, (1), pp. 249254.
    11. 11)
      • 8. Abd-Elhady, A., Ibrahim, M., Taha, T., et al: ‘Effect of temperature on AC breakdown voltage of nanofilled transformer oil’, IET Sci. Meas. Technol., 2018, 12, (1), pp. 138144.
    12. 12)
      • 12. Przybylek, P., Nadolny, Z., Moscicka-Grzesiak, H.: ‘Bubble effect as a consequence of dielectric losses in cellulose insulation’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (3), pp. 913919.
    13. 13)
      • 18. RaviPrakash, J., McDaniel, A.H., Horna, M., et al: ‘Hydrogen sensors: role of palladium thin film morphology’, Sens. Actuators B Chem., 2007, 120, (2), pp. 439446.
    14. 14)
      • 19. Zeng, X., Latimer, M., Xiao, Z., et al: ‘Hydrogen gas sensing with networks of ultrasmall palladium nanowires formed on filtration membranes’, Nano Lett., 2011, 11, (1), pp. 262268.
    15. 15)
      • 3. Levi, R., Manifase, S.: ‘Further studies of anomalous phenomena in dielectric-loss measurements-transformer bushings model’, IEEE Trans. Power Deliv., 1995, 10, (2), pp. 889895.
    16. 16)
      • 13. Jashandeep, S., Yog, R., Raj, K., et al: ‘Condition monitoring of power transformers-bibliography survey’, IEEE Electr. Insul. Mag., 2008, 24, (3), pp. 1125.
    17. 17)
      • 10. Metwally, I.A.: ‘Failures, monitoring and new trends of power transformers’, IEEE Potentials, 2011, 30, (30), pp. 3643.
    18. 18)
      • 9. Yang, L., Chen, J., Gao, J., et al: ‘Accelerating frequency domain dielectric spectroscopy measurements on insulation of transformers through system identification’, IET Sci. Meas. Technol., 2018, 12, (2), pp. 247254.
    19. 19)
      • 21. Liu, Y., Chen, Y., Song, H., et al: ‘Characteristics of an optical fiber hydrogen gas sensor based on a palladium and yttrium alloy thin film’, IEEE Sens. J., 2013, 13, (7), pp. 26992704.
    20. 20)
      • 20. Yang, F., Taggart, D.K., Penner, R.M., et al: ‘Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture’, Nano Lett., 2009, 9, (5), pp. 21772182.
    21. 21)
      • 7. Rao, U., Kumar, R., Jarial, R., et al: ‘Understanding the ageing behaviour of transformer oil–paper insulation with ester and mixed dielectric fluids’, IET Sci. Meas. Technol., 2018, 12, (7), pp. 851857.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0262
Loading

Related content

content/journals/10.1049/iet-smt.2019.0262
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address