Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Calibrated non-contact vibrational harmonics measurement based on self-vibration compensated 2D-PSD with MEMS accelerometer using FFT analysis

This study presents a novel fast Fourier transform (FFT)-based non-contact vibrational harmonics measurement system using a position sensitive detector (PSD) along with calibration using a piezoelectric accelerometer. Frequency-domain vibrational analysis is required as the changes in machine dynamics are directly related to its failures and could provide more insight into the vibration signal. In this regard, FFT is used for spectral analysis to detect the harmonics in the vibration signal. The novelty of the applied technique for detecting vibrational harmonics lies in its innate contactless nature where the vibration detection sensor i.e. PSD is placed at a particular distance from the vibrating target. Additionally, the parasitic and external vibrations, which might pose unforeseen errors in the detected vibration data, have been nullified by employing a self-vibration technique using an ADXL-345 three-axis accelerometer. The results obtained through PSD have been calibrated via a standard Brüel & Kjaer (B & K) vibration measurement system which uses a piezoelectric accelerometer (B & K accelerometer). The proposed measurement technique is equipped with NI compact RIO-9074 that features a real-time processor and an FPGA. The system was observed to effectively measure the frequency range 5–600 Hz with a maximum relative error of 2% in FFT amplitudes.

References

    1. 1)
      • 8. Jones, R.M.: ‘Enveloping for bearing analyses’, Sound Vib., 1996, pp. 1015, https://www.engr.colostate.edu/~dga/documents/mech307/handouts/bearing_signature_analysis.pdf.
    2. 2)
      • 23. Singh, G.K., Sa'ad Ahmed, S.A.K.: ‘Vibration signal analysis using wavelet transform for isolation and identification of electrical faults in induction machine’, Electr. Power Syst. Res., 2003, 68, (2), pp. 119136.
    3. 3)
      • 15. Perrone, G., Vallan, A.: ‘A low-cost optical sensor for noncontact vibration measurements’, IEEE Trans. Instrum. Meas., 2009, 58, (5), pp. 16501656.
    4. 4)
      • 16. Saha, A., Das, S., Suresh, M., et al: ‘FPGA based self-vibration compensated two dimensional non-contact vibration measurement using 2D position sensitive detector with remote monitoring’, Meas. J. Int. Meas. Confed., 2017, 111, pp. 271278.
    5. 5)
      • 25. Tandon, N., Choudhury, A.: ‘Review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings’, Tribol. Int., 1999, 32, (8), pp. 469480.
    6. 6)
      • 24. Tuck, K.: ‘Frequency analysis in the industrial market using accelerometer sensors’, Sensors (Peterborough, NH), 2008, pp. 113, https://www.nxp.com/docs/en/application-note/AN3751.pd.
    7. 7)
      • 27. Mathew, J., Alfredson, R.J.: ‘The condition monitoring of rolling element bearings using vibration analysis’, J. Vib. Acoust. Stress Reliab. Des., 1984, 106, (3), p. pp. 447453.
    8. 8)
    9. 9)
      • 3. Praveen Kumar, T., Jasti, A., Saimurugan, M., et al: ‘Vibration based fault diagnosis of automobile gearbox using soft computing techniques’. ACM Int. Conf. Proc., Amritapuri, India, 10–11 October 2014 Series, https://doi.org/10.1145/2660859.2660918.
    10. 10)
      • 18. Johnson, R., Lentz, C.: ‘2D optical position sensor’. Circuit Cellar, East Hartford, CT, USA, 2003152, pp. 17, http://faculty.petra.ac.id/resmana/private/circuit-cellar/2-D%20Optical%20Position%20Sensor.pdf.
    11. 11)
      • 1. Lacey, S.J.: ‘The role of vibration monitoring in predictive maintenance’, Maint. Asset Manage., 2010, 25, (2), pp. 3844.
    12. 12)
      • 28. Patidar, S., Soni, P.: ‘An overview on vibration analysis techniques for the diagnosis of rolling element bearing faults’, Int. J. Eng. Trends Technol., 2013, 4, (5), pp. 18041809.
    13. 13)
      • 7. Randall, R.B.: ‘Vibration-based condition monitoring: industrial, aerospace and automotive applications’, 2010.
    14. 14)
      • 5. Ebersbach, S., Peng, Z.: ‘Expert system development for vibration analysis in machine condition monitoring’, Expert Syst. Appl., 2008, 34, (1), pp. 291299.
    15. 15)
      • 13. Tatar, K., Gren, P.: ‘Measurement of milling tool vibrations during cutting using laser vibrometry’, Int. J. Mach. Tools Manuf., 2008, 48, (3–4), pp. 380387.
    16. 16)
      • 4. Iorgulescu, M., Beloiu, R.: ‘Vibration and current monitoring for fault's diagnosis of induction motors’, Ann. Univ, Craiova, Electr. Eng. Series, 2008, 32, pp. 102107.
    17. 17)
      • 6. Patil, S.S., Gaikwad, J.A.: ‘Vibration analysis of electrical rotating machines using FFT: a method of predictive maintenance’. 2013 4th Int. Conf. Computing, Communications and Network Technologies (ICCCNT), Tiruchengode, India, 2013.
    18. 18)
      • 9. Yamamoto, G.K., da Costa, C., da Silva Sousa, J.S.: ‘A smart experimental setup for vibration measurement and imbalance fault detection in rotating machinery’, Case Studies Mech. Syst. Signal Process., 2016, 4, pp. 818.
    19. 19)
      • 2. Aharamuthu, K., Ayyasamy, E.: ‘Gear fault diagnosis using vibration signals based on decision tree assisted intelligent controllers’, J. Vibroeng., 2013, 15, (4), pp. 18261837.
    20. 20)
      • 30. Bartoletti, C., Desiderio, M., Di Carlo, D., et al: ‘Vibro-acoustic techniques to diagnose power transformers’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 221229.
    21. 21)
      • 26. Lin, H.C., Ye, Y.C.: ‘Reviews of bearing vibration measurement using fast Fourier transform and enhanced fast Fourier transform algorithms’, Adv. Mech. Eng., 2019, 11, (1), pp. 112.
    22. 22)
      • 29. Mitra, A., Sen, S.: ‘FFT analysis using LabView as a part of vibration and preventive maintenance class for senior level MET students’, 2008, pp. 495499.
    23. 23)
      • 10. Castellini, P.: ‘Vibration measurements by tracking laser Doppler vibrometer on automotive components’, Shock Vib., 2014, 9, (1–2), pp. 6789.
    24. 24)
      • 31. Garcia, B., Burgos, J.C., Alonso, A.M.: ‘Transformer tank vibration modeling as a method of detecting winding deformations-part II: experimental verification’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 164169.
    25. 25)
      • 17. Yang, C.H., Wu, T.C.: ‘Vibration measurement method of a string in transversal motion by using a PSD’, Sensors (Switzerland), 2017, 17, (7), pp. 113.
    26. 26)
      • 11. Li, T., Shi, C., Tan, Y., et al: ‘Fiber Bragg grating sensing-based online torque detection on coupled bending and torsional vibration of rotating shaft’, IEEE Sens. J., 2017, 17, (7), pp. 11992007.
    27. 27)
      • 21. Sui, J., Zhang, X., Yang, L., et al: ‘Vibration measurement system based on position sensitive detector’, Sens. Rev., 2011, 31, pp. 120126.
    28. 28)
      • 12. Singh, K.M., Sumathi, P.: ‘Vibration parameter estimation methods for ultrasonic measurement systems – a review’, IET Sci. Meas. Technol., 2015, 9, pp. 492504.
    29. 29)
      • 14. Siegmund, G.: ‘Sources of measurement error in laser Doppler vibrometers and proposal for unified specifications’. Eighth Int. Conf. on Vibration Measurements by Laser Techniques Advances and Applications, Ancona, Italy, 2008, 7098, p. 70980Y.
    30. 30)
      • 19. Beziuk, G., Grobelny, A., Witkowski, J.S., et al: ‘Implementation of PSD sensor for measurement of vibrations’. ICSES'08 – ICSES 2008 Int. Conf. Signals and Electronic Systems Proc., Krakow, Poland, 2008, (1), pp. 475478.
    31. 31)
      • 20. Yuan, J., Qiu, Z.X., Shao, J.X., et al: ‘Position measurement and wireless measurement system of straightness error based on two-dimensional PSD’. Proc. – Int. Conf. on Electrical and Control Engineering, Wuhan, China, 2010, pp. 14901492.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0229
Loading

Related content

content/journals/10.1049/iet-smt.2019.0229
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address