Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Design of a flat-type magnetic position sensor using a finite-difference method

Design of a flat-type magnetic position sensor using a finite-difference method

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an analysis and the design of a new flat-type position sensor with an external armature. One excitation coil and two antiserially connected pickup coils are used in the stationary part. Solid iron segments or steel lamination segments are used for the moving armature. The proposed position sensor was modelled using linear movement. A two-dimensional finite-difference method was developed and was used for fast analysis for optimising the sensor. The induced eddy currents in the solid armature were taken into account in the finite-difference analysis. The finite-difference calculations were compared with 2D and 3D finite-element method simulations and with experimental results. The sensor has a total error of 0.23 mm root-mean-square for 36 mm range without any compensation. Unlike previous designs, the authors’ new sensor has no moving coil.

References

    1. 1)
      • 8. Babu, A., George, B.: ‘Design and development of a new non-contact inductive displacement sensor’, IEEE Sens. J., 2018, 18, (3), pp. 976984.
    2. 2)
      • 9. Djuric, S.M.: ‘Performance analysis of a planar displacement sensor with inductive spiral coils’, IEEE Trans. Magn., 2014, 50, (4), pp. 14.
    3. 3)
      • 6. Kano, Y., Hasebe, S., Huang, C., et al: ‘New type linear variable differential transformer position transducer’, IEEE Trans. Instrum. Meas., 1989, 38, (2), pp. 407409.
    4. 4)
      • 26. Talaat, M., Metwally, H.M.B., Arafa, I.: ‘Experimental and simulation study of wireless power transfer using resonators with coupled electric fields’, IEEE Trans. Plasma Sci., 2018, 46, (7), pp. 24802487.
    5. 5)
      • 37. Gieras, J.F.: ‘Analytical method of calculating the electromagnetic field and power losses in ferromagnetic half space, taking into account saturation and hysteresis’, Proc. Inst. Electr. Eng., 1977, 124, (11), pp. 10981104.
    6. 6)
      • 16. Stoll, R.L.: ‘Analysis of eddy currents’ (Clarendon Press, UK, 1974).
    7. 7)
      • 31. Saxena, S.C., Seksena, S.B.L.: ‘A self-compensated smart LVDT transducer’, IEEE Trans. Instrum. Meas., 1989, 38, (3), pp. 748753.
    8. 8)
      • 33. Tian, G.Y., Zhao, Z.X., Baines, R.W., et al: ‘Computational algorithms for linear variable differential transformers (LVDTs)’, IEE Proc. Sci. Meas. Technol., 1997, 144, (4), pp. 189192.
    9. 9)
      • 4. Martino, M., Danisi, A., Losito, R., et al: ‘Design of a linear variable differential transformer with high rejection to external interfering magnetic field’, IEEE Trans. Magn., 2010, 46, (2), pp. 674677.
    10. 10)
      • 13. Erdelyi, E.A., Ahamed, S.V., Burtness, R.D.: ‘Flux distribution in saturated DC machines at no-load’, IEEE Trans. Power Appl. Syst., 1965, 84, (5), pp. 375381.
    11. 11)
      • 1. Ripka, P.: ‘Magnetic sensors and magnetometers’ (Artech House, USA, 2001).
    12. 12)
      • 10. Anandan, N., George, B.: ‘Design and development of a planar linear variable differential transformer for displacement sensing’, IEEE Sens. J., 2017, 17, (16), pp. 52985305.
    13. 13)
      • 29. Lesniewska, E., Rajchert, R.: ‘Behaviour of measuring current transformers with cores composed from different magnetic materials at non-rated loads and overcurrents’, IET Sci. Meas. Technol., 2019, 13, (7), pp. 944948.
    14. 14)
      • 20. ANSYS-Maxwell software’. Available at https://www.ansys.com/products/electronics/ansys-maxwell, accessed 23 January 2019.
    15. 15)
      • 17. Weissinger, C., Oswald, A., Herzog, H.-G.: ‘Design of a position sensor using finite-element analysis based on the effect of local magnetic saturation’, IET Sci. Meas. Technol., 2012, 6, (5), pp. 364368.
    16. 16)
      • 3. Sykulski, J.K., Sykulska, E., Hughes, S.T.: ‘Application of finite-element modelling in LVDT design’, Int. J. Comput. Math. Electr. Electron. Eng., 1992, 11, (1), pp. 7376.
    17. 17)
      • 28. Grima, A., Castro, M.D., Masi, A., et al: ‘Design enhancements of an ironless inductive position sensor’, IEEE Trans. Instrum. Meas., 2019(Early access on https://ieeexplore.ieee.org/document/8693550, 17 April 2019).
    18. 18)
      • 18. Yang, S.-H., Hirata, K., Ota, T., et al: ‘Impedance linearity of contactless magnetic-type position sensor’, IEEE Trans. Magn., 2017, 53, (6), pp. 14.
    19. 19)
      • 22. Ripka, P., Tipek, A.: ‘Modern sensors handbook’ (Wiley-ISTE, UK, 2013).
    20. 20)
      • 14. Binns, K.J., Lawrenson, P.J.: ‘Analysis and computation of electric and magnetic field problems’ (Pergamon International Library of Science, Technology, Engineering and Social Studies, UK, 1973, 2nd edn.).
    21. 21)
      • 2. Kilani, M., Taifour, S., Al-Sharif, L.: ‘Effect of design geometry on the performance characteristics of linear variable differential transformers’, Sens. Trans., 2013, 150, (3), pp. 6671.
    22. 22)
      • 19. Singh, W.S., Mukhopadhyay, C.K., Chandra Rao, B.P.: ‘Development of a high sensitive magnetic flux leakage instrument for imaging of localised flaws in small diameter ferromagnetic steel tubes’, IET Sci. Meas. Technol., 2018, 12, (7), pp. 932936.
    23. 23)
      • 35. Yin, S., Ma, X.: ‘Analytical model for the equivalent impedances of the domestic induction heating system with rectangular cross-sectional windings’, IET Sci. Meas. Technol., 2019, 13, (7), pp. 10261032.
    24. 24)
      • 15. Nasar, S.A., Boldea, I.: ‘Linear motion electric machines’ (John Wiley & Sons, Inc., USA, 1976, 1st edn.).
    25. 25)
      • 27. Reinholz, B., Seethaler, R.J.: ‘Design and validation of a variable reluctance differential solenoid transducer’, IEEE Sens. J., 2019, 19, 1106311071.
    26. 26)
      • 32. Bera, S.C., Sarkar, R., Bhowmick, M.: ‘Study of a modified differential inductance measurement circuit as position transducer of a power cylinder’, IEEE Trans. Instrum. Meas., 2012, 61, (2), pp. 530538.
    27. 27)
      • 34. Mishra, S.K., Panda, G., Das, D.P.: ‘A novel method of extending the linearity range of linear variable differential transformer using artificial neural network’, IEEE Trans. Instrum. Meas., 2010, 59, (4), pp. 947953.
    28. 28)
      • 11. Yañez-Valdez, R., Alva-Gallegos, R., Caballero-Ruiz, A., et al: ‘Selection of soft magnetic core materials used on an LVDT prototype’, J. Appl. Res. Technol., 2012, 10, (2), pp. 195205.
    29. 29)
      • 12. Sumali, H., Bystrom, E.P., Krutz, G.W.: ‘A displacement sensor for non-metallic hydraulic cylinders’, IEEE Sens. J., 2003, 3, (6), pp. 818826.
    30. 30)
      • 23. Clayton, R.P.: ‘Inductance: loop and partial’ (Wiley-IEEE Press, USA, 2009, 1st edn.).
    31. 31)
      • 21. Salon, S.: ‘Finite-element analysis of electrical machines’ (Springer-Verlag (New York) Inc., USA, 1995).
    32. 32)
      • 30. Abu-Siada, A., Radwan, I., Abdou, A.F.: ‘3D approach for fault identification within power transformers using frequency response analysis’, IET Sci. Meas. Technol., 2019, 13, (6), pp. 903911.
    33. 33)
      • 36. Nagel, J.R.: ‘Fast finite-difference calculation of eddy currents in thin metal sheets’, ACES J., 2018, 33, (6), pp. 575584.
    34. 34)
      • 24. Ripka, P., Mirzaei, M., Chirtsov, A., et al: ‘Transformer position sensor for a pneumatic cylinder’, Sens. Actuators A, 2019, 294, pp. 91101.
    35. 35)
      • 5. Sydenham, P.H., Taing, V., Mounsey, D.J., et al: ‘Low-cost, precision, flat inductive sensor’, Measurement, 1995, 15, (3), pp. 179188.
    36. 36)
      • 7. Kano, Y., Hasebe, S., Miyaji, H.: ‘New linear variable differential transformer with square coils’, IEEE Trans. Magn., 1990, 26, (5), pp. 20202022.
    37. 37)
      • 25. Talaat, M., Mostafa, N.H.: ‘Use of finite-element method for the numerical analysis of eddy current brake’. 15th Int. Workshop on Research and Education in Mechatronics (REM), Elgouna, Egypt, 9–11 September 2014.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0197
Loading

Related content

content/journals/10.1049/iet-smt.2019.0197
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address