access icon free Probabilistic assessment of insulator failure under contaminated conditions

This study presents a probabilistic approach, based on the finite element method (FEM), to model insulator flashover and calculate the failure risk of insulators under contaminated conditions. In the proposed method, the voltage distribution along the insulator surface is estimated by FEM and the random turn wheel is utilised to describe the stochastic propagation of arc along the insulator surface as well as in the air. This basis is used to obtain the probability of insulator flashover for different contaminations, separately. Then, from the simulation results, the probability density function of flashover in terms of pollution can be determined based on the Kolmogorov–Smirnov test. The proposed model is verified by comparing the associated results with those of the literature, in which the reliability and accuracy of the presented method are approved. Finally, having the cumulative distribution function of insulation strength and probability density function of pollution stress, the failure risk is calculated, in which the results can be used to predict the annual outage rate of transmission lines.

Inspec keywords: power transmission reliability; flashover; failure analysis; voltage distribution; finite element analysis; insulators; insulator contamination; power system reliability; stochastic processes; probability

Other keywords: insulator failure; random turn wheel; FEM; insulation strength; insulator flashover; probabilistic assessment; insulator surface; voltage distribution; insulators; cumulative distribution function; failure risk; probabilistic approach; contaminated conditions; finite element method; different contaminations

Subjects: Probability theory, stochastic processes, and statistics; Reliability; Other topics in statistics; Other topics in statistics; Statistics

References

    1. 1)
      • 17. Slama, M.El-A., Hadi, H., Flazi, S.: ‘Study on influence of the no-uniformity of pollution at the surface of HVAC lines insulators on flashover probability’. IEEE Conf. on Electrical Insulation Dielectric Phenomena, Vancouver, Canada, October 2007.
    2. 2)
      • 3. Gencoglu, M.T., Cebeci, M.: ‘The pollution flashover on high voltage insulators’, Electr. Power Syst. Res., 2008, 78, pp. 19141921.
    3. 3)
      • 8. Dhahbi-Megriche, N., Beroual, A.: ‘Flashover dynamic model of polluted insulators under ac voltage’, IEEE Trans. Dielectr. Electr. Insul., 2000, 7, (2), pp. 283289.
    4. 4)
      • 18. Jiang, X., Bi, M., Hu, J., et al: ‘Influence of test methods on dc flashover performance of ice-covered composite insulators and statistical analysis’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (6), pp. 20192028.
    5. 5)
      • 16. Engelbrecht, C.S., Gutman, I., Hartings, R.: ‘A practical implementation of statistical principles to dimension AC line insulators with respect to contaminated conditions’, IEEE Trans. Power Deliv., 2007, 22, (1), pp. 667673.
    6. 6)
      • 15. Engelbrecht, C.S., Hartings, R., Lundquist, J.: ‘Statistical dimensioning of insulators with respect to polluted conditions’, IEE Proc. Gener. Transm. Distrib., 2004, 151, (3), pp. 321326.
    7. 7)
      • 11. Water, R.T., Haddah, A., Griffiths, H., et al: ‘Partial arc and spark models of the flashover of lightly polluted insulators’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (2), pp. 417424.
    8. 8)
      • 10. Slama, M.El-A., Beroual, A., Hadi, H.: ‘Influence of the linear non uniformity of pollution layer on the insulator flashover under impulse voltage – estimation of the effective pollution thickness’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (2), pp. 384392.
    9. 9)
      • 1. Gorur, R.S., Cherney, E.A, Burnham, J.T.: ‘Outdoor insulators’ (Phoenix, Ariz, USA, 1999).
    10. 10)
      • 12. Bessedik, S.A., Hadi, H., Volat, C., et al: ‘Refinement of residual resistance calculation dedicated to polluted insulator flashover models’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (3), pp. 12071215.
    11. 11)
      • 19. Tezimas, A., Rowland, S.M.: ‘Risk estimation of ageing outdoor composite insulators with Markov models’, IEE Proc. Gener. Transm. Distrib., 2012, 6, (8), pp. 803810.
    12. 12)
      • 4. Obenaus, F.: ‘Contamination flashover and creepage path length’, Dtsch. Elektrotechnik, 1958, 12, pp. 135136.
    13. 13)
      • 13. Taheri, S., Farzaneh, M., Fofana, I.: ‘Dynamic modeling of AC multiple arcs of EHV post station insulators covered with ice’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 22142223.
    14. 14)
      • 22. The COMSOL group’, https://www.comsol.com, COMSOL, Inc., ver. 5.2, 2015.
    15. 15)
      • 6. Jolly, D.C., Cheng, T.C., Otten, D.M.: ‘Dynamic theory of discharge growth over contaminated insulator surfaces’. IEEE PES Winter Power Meeting Conf., California, American, January 1974.
    16. 16)
      • 7. Sundararajan, R., Gorur, R.S.: ‘Dynamic arc modeling of pollution flashover insulators under DC voltages’, IEEE Trans. Electr. Insul., 1993, 28, (2), pp. 209218.
    17. 17)
      • 5. Rizk, F.A.M.: ‘Mathematical models for pollution flashover’, Electra, 1981, 78, pp. 71103.
    18. 18)
      • 24. Volat, C.: ‘Comparison between the use of surface and volume conductivity to compute potential distribution along an insulator in presence of a thin conductive layer’. IEEE Electrical Insulation Conf., Ottawa, Canada, June 2013.
    19. 19)
      • 20. He, J., Gorur, R.S.: ‘A probabilistic model for insulator flashover under contaminated conditions’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (1), pp. 555563.
    20. 20)
      • 2. Kuffel, E., Zaengl, W.S.: ‘High voltage engineering’ (Pergamon Press, USA, 1984).
    21. 21)
      • 26. Montgomery, D.C., Runger, G.C.: ‘Applied statistics and probability for engineers’ (John Wiley, USA, 2018, 7th edn.).
    22. 22)
      • 27. Naito, K., Mizuno, Y., Naganawa, W.: ‘A study on probabilistic assessment of contamination flashover of high-voltage insulator’, IEEE Trans. Power Deliv., 1995, 10, (3), pp. 13781384.
    23. 23)
      • 23. Arshad Nekahi, A., McMeekin, S.G., Farzaneh, M.: ‘Flashover characteristics of silicone rubber sheets under various environmental conditions’, Energies, 2016, 9, (9), pp. 119.
    24. 24)
      • 14. Dhahbi-Megriche, N., Beroual, A.: ‘Self-consistent multi-arcs dynamic model for high voltage polluted insulators’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 28992907.
    25. 25)
      • 9. Slama, M.El.A., Beroual, A., Hadi, H.: ‘Analytical computation of discharge characteristic constants and critical parameters of flashover of polluted insulators’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (6), pp. 17641771.
    26. 26)
      • 21. He, J., Gorur, R.S.: ‘Flashover of insulators in a wet environment’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 10381044.
    27. 27)
      • 25. IEC Standard 60507.: ‘Artificial pollution tests on high-voltage insulators to be used on AC systems’, 2013.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0179
Loading

Related content

content/journals/10.1049/iet-smt.2019.0179
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading