access icon free Detecting feeble position oscillations from rotary encoder signal in an industrial robot via singular spectrum analysis

Position signal faces several weak oscillations due to mechanical flaw and faults occurred in the systems. These oscillations can be identified by the encoders that determine the performance and health condition of the machine. Nevertheless, also the concerned oscillation, rotary encoder signal also includes some measurement noise and a significant trend. These trends are typically of several orders, greater in activities than the involved amplitude oscillations, making it tough to detect the small oscillations except deformation of the signal. In addition, the oscillations can be problematic, and magnitude adjusted in unstable conditions. Singular spectrum analysis (SSA) is proposed to overcome this issue. A numerical emulation is demonstrated to show the efficiency of the approach. It indicates that SSA outperforms ensemble empirical mode decomposition (EEMD), empirical mode decomposition, and complete EEMD with adaptive noise in ability and accuracy. Moreover, during the movement of the robotic arm, encoder signals from the robot are analysed to determine the sources of oscillations in joints. The suggested technique is proven to be reliable and feasible for an industrial robot.

Inspec keywords: condition monitoring; vibration control; industrial manipulators; oscillations; fault diagnosis; spectral analysis; position control

Other keywords: robotic arm; rotary encoder signal; industrial robot; mechanical flaw; feeble position oscillations; position signal; amplitude oscillations; health condition; measurement noise; singular spectrum analysis; faults

Subjects: Signal processing and detection; Control applications in manufacturing processes; Digital signal processing; Spatial variables control; Maintenance and reliability; Manipulators; Robot and manipulator mechanics; Control in industrial production systems; Vibrations and shock waves (mechanical engineering); Mechanical variables control

References

    1. 1)
      • 4. Lei, Y., Feng, J., Jing, L., et al: ‘An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 31373147.
    2. 2)
      • 10. Mu, H., Chen, H., Zhu, Y.: ‘Vibration-energy-optimal trajectory planning for flexible servomotor systems with state constraints’, IET Control Theory Applic., 2019, 13, (1), pp. 5968.
    3. 3)
      • 35. Romero, F., Alonso, F.J., Cubero, J., et al: ‘An automatic SSA-based De-noising and smoothing technique for surface electromyography signals’, Biomed. Signal Process. Control, 2015, 18, pp. 317324.
    4. 4)
      • 3. Li, Y., Wang, X., Lin, J., et al: ‘A wavelet bicoherence-based quadratic nonlinearity feature for translational axis conditio monitoring’, Sensors (Basel), 2014, 14, (2), pp. 20712088.
    5. 5)
      • 5. Zhao, M., Lin, J., Xu, X., et al: ‘Multi-fault detection of rolling element bearings under harsh working condition using IMF-based adaptive envelope order analysis’, Sensors(Basel), 2014, 14, (11), pp. 2032020346.
    6. 6)
      • 21. Mohanty, S., Gupta, K.K., Raju, K.S.: ‘Adaptive fault identification of bearing using empirical mode decomposition–principal component analysis-based average kurtosis technique’, IET Sci. Meas. Technol., 2017, 11, (1), pp. 3040.
    7. 7)
      • 18. Giron-Sierra, J.M.: ‘Digital signal processing with Matlab examples’, volume 2: decomposition, recovery, data-based actions’ (Springer, Singapore, 2017).
    8. 8)
      • 13. Sapena-Bano, A., Riera-Guasp, M., Puche-Panadero, R., et al: ‘Harmonic order tracking analysis: A speed-sensorless method for condition monitoring of wound rotor induction generators’, IEEE Trans. Ind. Appl., 2016, 52, (6), pp. 11.
    9. 9)
      • 32. Rukhin, A.L.: ‘Analysis of time series structure SSA and related techniques’, Technometrics., 2012, 44, (3), pp. 290290.
    10. 10)
      • 20. Rojo, J., Rivero, R., Romero-Morte, J., et al: ‘Modeling pollen time series using seasonal-trend decomposition procedure based on loess smoothing’, Int. J. Biometeorol., 2017, 61, (2), p. 335.
    11. 11)
      • 7. Xu, X., Zhao, M., Lin, J.: ‘Detecting weak position fluctuations from encoder signal using singular Spectrum analysis’, ISA Trans., 2017, 71, pp. 440447.
    12. 12)
      • 9. Zhao, M., Jia, X., Lin, J., et al: ‘Instantaneous speed jitter detection via encoder signal and its application for the diagnosis of planetary gearbox’, Mech. Syst. Signal Process. ., 2018, 98, pp. 1631.
    13. 13)
      • 37. Kume, K., Nose-Togawa, N.: ‘An adaptive orthogonal SSA decomposition algorithm for a time series’, Adv. Data Sci. Adapt. Anal., 2018, 10, (1), p. 1850002.
    14. 14)
      • 23. Zhou, M., Xia, H., Zhong, H., et al: ‘A noise reduction method for photoacoustic imaging in vivo based on EMD and conditional mutual information’, IEEE Photonics J., 2019, 11, (1), pp. 110.
    15. 15)
      • 19. Alexandrov, T., Bianconcini, S., Dagum, E.B., et al: ‘A review of some modern approaches to the problem of trend extraction’, Econom. Rev., 2012, 31, (6), pp. 593624.
    16. 16)
      • 8. Jin, J., Chung, W.: ‘Obstacle avoidance of two-wheel differential robots considering the uncertainty of robot motion on the basis of encoder odometry information’, Sensors (Basel), 2019, 19, (2), pp. 1289.
    17. 17)
      • 12. Lei, Y., Qiao, Z., Xu, X., et al: ‘An underdamped stochastic resonance method with stable-state matching for incipient fault diagnosis of rolling element bearings’, Mech. Syst. Signal Process., 2017, 94, pp. 148164.
    18. 18)
      • 1. Gao, Y., Villecco, F., Li, M., et al: ‘Multi-scale permutation entropy based on improved lmd and hmm for rolling bearing diagnosis’, Entropy, 2017, 19, (4), p. 176.
    19. 19)
      • 2. Yi, C., Wang, D., Fan, W., et al: ‘EEMD-Based Steady-State indexes and their applications to condition monitoring and fault diagnosis of railway axle bearings’, Sensors (Basel), 2018, 18, (3), pp. 1704.
    20. 20)
      • 6. Hu, F., Chen, X., Cai, N., et al: ‘Error analysis and compensation of an optical linear encoder’, IET Sci. Meas. Technol., 2018, 12, (4), pp. 561566.
    21. 21)
      • 28. Zhaohua, W.U., Huang, N.E.: ‘Ensemble empirical mode decomposition: A noise-assisted data analysis method’, Adv. Adapt. Data. Anal., 2009, 01, (1), pp. 141.
    22. 22)
      • 15. Thamer, M., Campen, R.K., Wolf, M.: ‘Detecting weak signals from interfaces by high accuracy phase-resolved sfg spectroscopy’, Phys. Chem. Chem. Phys., 2018, 20, (40), pp. 2587525882.
    23. 23)
      • 29. Yeh, J.-R., Shieh, J.-S., Huang, N.E.: ‘Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method’, Adv. Adapt. Data. Anal., 2011, 02, (2), pp. 135156.
    24. 24)
      • 27. Nalband, S., Prince, A., Agrawal, A.: ‘Entropy-based feature extraction and classification of vibroarthographic signal using complete ensemble empirical mode decomposition with adaptive noise’, IET Sci. Meas. Technol., 2018, 12, (3), pp. 350359.
    25. 25)
      • 22. Javaid, A.Q., Ashouri, H., Dorier, A., et al: ‘Quantifying and reducing motion artifacts in wearable seismocardiogram measurements during walking to assess left ventricular health’, IEEE Trans. Biomed. Eng., 2016, PP, (99), pp. 11.
    26. 26)
      • 36. Wang, R., Ma, H.G., Qin, J.Q., et al: ‘Analysis of death series by SSA based BSS technique’. IEEE 2015 10th Int. Conf. on Information, Communications and Signal Processing, ICICS 2015, Singapore, December 2–4, 2015.
    27. 27)
      • 17. Mallat, S. , Peyré, G.: ‘A wavelet tour of signal processing’ (China Machine Press, USA, 2010).
    28. 28)
      • 16. Rui, M., Yushu, C., Huagang, S.: ‘Detection of weak signals based on empirical mode decomposition and singular Spectrum analysis’, IET Signal Process., 2013, 7, (4), pp. 269276.
    29. 29)
      • 14. Li, B., Zhang, X., Wu, J.: ‘New procedure for gear fault detection and diagnosis using instantaneous angular speed’, Mech. Syst. Signal Process., 2017, 85, pp. 415428.
    30. 30)
      • 34. Han, T., Jiang, D., Wang, N.: ‘The fault feature extraction of rolling bearing based on EMD and difference Spectrum of singular value’, Shock Vib., 2016, 2016, pp. 114.
    31. 31)
      • 26. Wang, X., Meng, J., Xu, Y., et al: ‘ECG compression based on combining of EMD and wavelet transform’, Electron. Lett., 2016, 52, (19), pp. 15881590.
    32. 32)
      • 33. Vitanov, N.K., Hoffmann, N.P., Wernitz, B.: ‘Nonlinear time series analysis of vibration data from a friction brake: SSA, PCA, and MFDFA’, Chaos, Solitons Fractals, 2014, 69, pp. 9099.
    33. 33)
      • 31. Golyandina, N.E., Zhigljavsky, A.: ‘Singular Spectrum analysis for time series’ (Plenum Press, USA, 2011).
    34. 34)
      • 38. Gillard, J., Knight, V.: ‘Using singular Spectrum analysis to obtain staffing level requirements in emergency units’, J. Oper. Res. Soc., 2014, 65, (5), pp. 735746.
    35. 35)
      • 25. Amarnath, M., Praveen Krishna, I.R.: ‘Empirical mode decomposition of acoustic signals for diagnosis of faults in gears and rolling element bearings’, IET Sci. Meas. Technol., 2012, 6, (4), p. 279.
    36. 36)
      • 30. Xu, Y., Luo, M., Li, T., et al: ‘ECG signal De-noising and baseline wander correction based on ceemdan and wavelet threshold’, Sensors (Basel), 2017, 17, (12), pp. 12754.
    37. 37)
      • 24. Chatterjee, S.: ‘Detection of focal electroencephalogram signals using higher-order moments in EMD-TKEO domain’, Healthc. Technol. Lett., 2019, 6, (3), pp. 6469.
    38. 38)
      • 11. Badshah, M., VanZwieten, J., Badshah, S., et al: ‘CFD study of blockage ratio and boundary proximity effects on the performance of a tidal turbine’, IET Renew. Power Gener., 2019, 13, (5), pp. 744749.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0172
Loading

Related content

content/journals/10.1049/iet-smt.2019.0172
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading