Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Multi-sensors in-line inspection robot for pipe flaws detection

Multi-sensors in-line inspection robot for pipe flaws detection

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In-line inspection (ILI) robot has been considered as an inevitable requirement to perform non-destructive testing methods efficiently and economically. The detection of flaws that could lead to leakages in buried concrete pipes has been an area of great concern to the oil and gas industry and water resource-based industry. The major problem is the difficulty in modelling the detection of cracks as a result of its irregularity and randomness that cannot be easily detected. This work covers the study of defect detection of non-destructive testing methods using fusion inspect sensors, light detection and ranging, and optic sensors. Studies on ILI robots are also reviewed to construct an efficient gauge. Nevertheless, the study on current support vector machine (SVM) technique is centred as the main classification engine for the combined sensory data. The prototype robot has been designed and successfully operated in a lab-scale environment. Intuitively, the obtained data described the status of inspected pipe clearly. Sensors from the proposed list also well integrated as attaching to the robot. The experiments with SVM techniques to evaluate the feasibility of defects detection also achieved remarkable results.

References

    1. 1)
      • 29. Cheng, J.C., Wang, M.: ‘Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques’, Autom. Constr., 2018, 95, (June), pp. 155171.
    2. 2)
      • 50. Suykens, J.A., Alzate, C., Pelckmans, K.: ‘Primal and dual model representations in kernel-based learning’, Stat. Surv., 2010, 4, pp. 148183.
    3. 3)
      • 5. Deepak, B., Bahubalendruni, M.R., Biswa, B.: ‘Development of in-pipe robots for inspection and cleaning tasks: survey, classification and comparison’, Int. J. Intell. Unmanned Syst., 2016, 4, (3), pp. 182210.
    4. 4)
      • 37. Lee, L.H., Rajkumar, R., Lo, L.H., et al: ‘Oil and gas pipeline failure prediction system using long range ultrasonic transducers and Euclidean-support vector machines classification approach’, Expert Syst. Appl., 2013, 40, (6), pp. 19251934.
    5. 5)
      • 14. Hirose, S., Ohno, H., Mitsui, T., et al: ‘Design of in-pipe inspection vehicles for ϕ25, ϕ50, ϕ150 pipes’. Proc. 1999 IEEE Int. Conf. on Robotics and Automation (Cat. No. 99CH36288C), Michigan, USA, 1999, vol. 3, no. May, pp. 23092314.
    6. 6)
      • 3. Wang, T., Wang, X., Hong, M.: ‘Gas leak location detection based on data fusion with time difference of arrival and energy decay using an ultrasonic sensor array’, Sensors, 2018, 18, (9), p. 2985..
    7. 7)
      • 31. Gibb, S., La, H.M., Le, T., et al: ‘Nondestructive evaluation sensor fusion with autonomous robotic system for civil infrastructure inspection’, J. Field Robot., 2018, 35, (September), pp. 9881004.
    8. 8)
      • 46. Cho, Y., Saul, L.: ‘Kernel methods for deep learning’, Advances in Neural Information Processing Systems 22: 23rd Annual Conf. on Neural Information Processing Systems, Vancouver, Canada, 2009, pp. 19.
    9. 9)
      • 4. Dierks, S., Kroll, A.: ‘Quantification of methane gas leakages using remote sensing and sensor data fusion’. 2017 IEEE Sensors Applications Symp. (SAS), New Jersey, USA, 2017, pp. 16.
    10. 10)
      • 11. Shukla, A., Karki, H.: ‘A review of robotics in onshore oil-gas industry’. 2013 IEEE Int. Conf. on Mechatronics and Automation, Takamatsu, Japan, 2013, pp. 11531160.
    11. 11)
      • 45. Chang, C.-C., Lin, C.-J.: ‘Libsvm: a library for support vector machines’, ACM Trans. Intell. Syst. Technol., 2011, 2, pp. 27:127:27.
    12. 12)
      • 41. Shawe-Taylor, J., Sun, S.: ‘A review of optimization methodologies in support vector machines’, Neurocomputing, 2011, 74, (17), pp. 36093618.
    13. 13)
      • 40. Novak, D., Riener, R.: ‘A survey of sensor fusion methods in wearable robotics’, Robot. Auton. Syst., 2015, 73, pp. 155170.
    14. 14)
      • 2. Datta, S., Sarkar, S.: ‘Journal of loss prevention in the process industries a review on different pipeline fault detection methods’, J. Loss Prevention Process Ind., 2016, 41, pp. 97106.
    15. 15)
      • 18. Suzumori, K., Miyagawa, T., Kimura, M., et al: ‘Micro inspection robot for 1-in pipes’, IEEE/ASME Trans. Mechatronics, 1999, 4, (3), pp. 286292.
    16. 16)
      • 36. Ji, J., Zhang Yang, C., et al: ‘Prediction of stress concentration factor of corrosion pits on buried pipes by least squares support vector machine’, Eng. Fail. Anal., 2015, 55, pp. 131138.
    17. 17)
      • 30. Meng, M., Chua Ong, Y.J., et al: ‘Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks’, Neurocomputing, 2017, 257, pp. 128135.
    18. 18)
      • 34. Mashford, J., Rahilly, M., Davis, P., et al: ‘A morphological approach to pipe image interpretation based on segmentation by support vector machine’, Autom. Constr., 2010, 19, (7), pp. 875883.
    19. 19)
      • 21. Pfotzer, L., Klemm, S., Roennau, A., et al: ‘Autonomous navigation for reconfigurable snake-like robots in challenging, unknown environments’, Robot. Auton. Syst., 2017, 89, pp. 123135.
    20. 20)
      • 22. Hayashi, I., Iwatsuki, N., Iwashina, S.: ‘The running characteristics of a screw-principle microrobot in a small bent pipe’. MHS'95, Proc. of the Sixth Int. Symp. on Micro Machine and Human Science, Nagoya, Japan, 1995, vol. 152, no. 1, pp. 225228.
    21. 21)
      • 27. Myrans, J., Kapelan, Z., Everson, R.: ‘Automated detection of faults in wastewater pipes from CCTV footage by using random forests’, Procedia Eng., 2016, 154, pp. 3641.
    22. 22)
      • 42. Shawe-Taylor, J., Sun, S.: ‘Kernel methods and support vector machines’, No. July 2012, 2014.
    23. 23)
      • 6. Shao, L., Wang, Y., Guo, B., et al: ‘A review over state of the art of in-pipe robot’. 2015 IEEE Int. Conf. on Mechatronics and Automation, Beijing, China, 2015, pp. 21802185.
    24. 24)
      • 1. Li, X., Yu Iyengar, W., et al: ‘On optimizing autonomous pipeline inspection’, IEEE Trans. Robot., 2012, 28, (1), pp. 223233.
    25. 25)
      • 16. Muramatsu, M., Namiki, N., Koyama, R., et al: ‘Autonomous mobile robot in pipe for piping operations’. Proc. 2000 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), Takamatsu, Japan, 2000, vol. 3, pp. 21662171.
    26. 26)
      • 20. Wang, Z., Gu, H.: ‘A bristle-based pipeline robot for Ill-constraint pipes’, IEEE/ASME Trans. Mechatronics, 2008, 13, (3), pp. 383392.
    27. 27)
      • 24. Bertetto, A.M., Ruggiu, M.: ‘In-pipe inch-worm pneumatic flexible robot’. Proc. (Cat. No. 01TH8556) – 2001 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Como, Italy, 2001, vol. 2, no. July, pp. 12261231.
    28. 28)
      • 33. Oreški, G., Oreški, S.: ‘An experimental comparison of classification algorithm performances for highly imbalanced datasets’. 25th Central European Conf. on Information and Intelligent Systems, Varaždin, Croatia, 2014, no. October, pp. 112.
    29. 29)
      • 17. Choi, H.R., Ryew, M.S.: ‘Robotic system with active steering capability for internal inspection of urban gas pipelines’, Mechatronics. (Oxf), 2002, 12, (5), pp. 713736.
    30. 30)
      • 26. Halfawy, M.R., Hengmeechai, J.: ‘Automated defect detection in sewer closed circuit television images using histograms of oriented gradients and support vector machine’, Autom. Constr., 2014, 38, pp. 113.
    31. 31)
      • 35. Mashford, J., Silva, D.D., Burn, S., et al: ‘Leak detection in simulated water pipe networks using SVM’, Appl. Artif. Intell., 2012, 26, (5), pp. 429444.
    32. 32)
      • 13. Okamoto, J., Adamowski Camerini, J.C., et al: ‘Autonomous system for oil pipelines inspection’, Mechatronics. (Oxf), 1999, 9, (7), pp. 731743.
    33. 33)
      • 52. Vapnik, V., Izmailov, R.: ‘Learning using privileged information: similarity control and knowledge transfer’, J. Mach. Learn. Res., 2015, 16, pp. 20232049.
    34. 34)
      • 39. Amaya-Gómez, R., Sánchez-Silva, M., Muñoz, F.: ‘Pattern recognition techniques implementation on data from In-line inspection (ILI)’, J. Loss Prevention Process Ind., 2016, 44, pp. 735747.
    35. 35)
      • 12. Roh, S.G., Choi, R.H.: ‘Differential-drive in-pipe robot for moving inside urban gas pipelines’, IEEE Trans. Robot., 2005, 21, (1), pp. 117.
    36. 36)
      • 43. Schempf, H., Mutschler, E., Goltsbergm, V., et al: ‘Grislee: Gasmain repair and inspection system for live entry environments’, Int. J. Rob. Res., 2003, 22, (7–8), pp. 603616.
    37. 37)
      • 48. Wiering, A.M., Schomaker, L.R.B.: ‘Multi-layer support vector machines’, in Suykens, J.A.K., Signoretto, M., Argyriou, A. (Eds.): Regularization, optimization, kernels, and support vector machines, CRC Machine Learning and Pattern Recognition Series (Chapman & Hall, Boca Raton, USA, 2014), ch. 20, pp. 457475.
    38. 38)
      • 28. Kumar, S.S., Abraham, D.M., Jahanshahi, M.R., et al: ‘Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks’, Autom. Constr., 2018, 91, (2017), pp. 273283.
    39. 39)
      • 51. Suykens, K.J.A.: ‘Deep restricted Kernel machines using conjugate feature duality’, Neural Comput., 2017, 29, pp. 21232163.
    40. 40)
      • 49. Li, Y., Zhang, T.: ‘Deep neural mapping support vector machines’, Neural Netw., 2017, 93, pp. 185194.
    41. 41)
      • 38. Akram, N.A., Isa Lee, D., et al: ‘Active incremental support vector machine for oil and gas pipeline defects prediction system using long range ultrasonic transducers’, Ultrasonics, 2014, 54, (6), pp. 15341544.
    42. 42)
      • 44. Kim, J.H., Sharma, G., Iyengar, S.S.: ‘FAMPER: A fully autonomous mobile robot for pipeline exploration’. Proc. of the IEEE Int. Conf. on Industrial Technology, Viña del Mar, Chile, 2010, pp. 517523.
    43. 43)
      • 7. Kuntze, H., Haffner, H.: ‘Experiences with the development of a robot for smart multisensoric pipe inspection’. Proc., 1998 IEEE Int. Conf. on Robotics and Automation (Cat. No. 98CH36146), Leuven, Belgium, 1998, vol. 2, pp. 17731778.
    44. 44)
      • 25. Huang, H.P., Yan Cheng, J.L., et al: ‘Development and fuzzy control of a pipe inspection robot’, IEEE Trans. Ind. Electron., 2010, 57, (3), pp. 10881095.
    45. 45)
      • 47. Tang, Y.: ‘Deep learning using support vector machines’, arXiv:1306.0239, 2013.
    46. 46)
      • 9. Li, P., Yang, W., Jiang, X., et al: ‘Active screw-driven in-pipe robot for inspection’. Proc. of 2017 IEEE Int. Conf. on Unmanned Systems, Beijing, China, 2018, vol. 2018-January, pp. 608613.
    47. 47)
      • 19. Lee, D., Park Yang, J., et al: ‘Novel mechanisms and simple locomotion strategies for an in-pipe robot that can inspect various pipe types’, Mech. Mach. Theory, 2012, 56, pp. 5268.
    48. 48)
      • 23. Hu, Z., Appleton, E.: ‘Dynamic characteristics of a novel self-drive pipeline pig’, IEEE Trans. Robot., 2005, 21, (5), pp. 781789.
    49. 49)
      • 8. Siqueira, E., Botelho, S., Azzolin, R., et al: ‘A review about robotic inspection considering the locomotion systems and odometry’. IECON Proc. (Industrial Electronics Conf.), Florence, Italy, 2016, pp. 571576.
    50. 50)
      • 15. Suzumori, K., Hori, K., Miyagawa, T.: ‘A direct-drive pneumatic stepping motor for robots: designs for pipe-inspection microrobots and for human-care robots’. Proc. 1998 IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, 1998, vol. 4, no. May, pp. 30473052.
    51. 51)
      • 10. Montero, R., Victores, J.G., Martinez, S., et al: ‘Past, present and future of robotic tunnel inspection’, Autom. Constr., 2015, 59, pp. 99112.
    52. 52)
      • 32. Caruana, R., Niculescu-Mizil, A.: ‘An empirical comparison of supervised learning algorithms’. Proc. of the 23rd Int. Conf. on Machine Learning, Pennsylvania, USA, 2006, pp. 161168.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0171
Loading

Related content

content/journals/10.1049/iet-smt.2019.0171
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address