Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Evaluation of sustainability of microgrid grounding grid design under varying soil conditions through estimation of touch, step voltages and novel methods of earthing

This study examines the sustainability of uniform as well as an optimal grounding grid (GG) design for the microgrid (MG), in terms of variations in the top layer (TL), middle layer (ML), and bottom layer (BL) soil resistivities (, , and , respectively) along with change in a thickness of TL and ML. GG design is highly dependent on , as it helps in determining the density of conductors at grid extremities. With an increase in , touch voltage (TV) crosses its tolerable limit, but step voltage (SV) remains within its limit. However, with a simultaneous increase in the thickness of ML (MLT), SV also crosses its limit. For higher than , with an increase in MLT, TV, and SV increase, while in the reverse case, they decrease. For the given MLT, is crucial in determining GG burial depth. Validation of results is done by comparing them with the IEEE standard. Also, the optimal compression ratio of GG with an increase in MLT is analysed. TVs can be reduced to a great extent, with the application of distinctive methods of earthing (TT-GG system, TN-S-GG system, and TN-C-S-GG system) in MG. This study also reveals that an increase in GG resistance leads to a reduction in TV.

References

    1. 1)
      • 17. Lee, H.-S., Kim, J.-H., Dawalibi, F.P., et al: ‘Efficient ground grid designs in layered soils’, IEEE Trans. Power Deliv., 1998, 13, (3), pp. 745751.
    2. 2)
      • 29. Aydiner, M.: ‘Grounding grid analysis’ (METU, Turkey, 2009).
    3. 3)
      • 14. Dawalibi, F., Mukhedkar, D.: ‘Parametric analysis of grounding grids’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, (5), pp. 16591668.
    4. 4)
      • 28. Sakis Meliopoulos, A.P.: ‘Power system grounding and transients’ (Marcel Dekker Publications Inc., USA, 1988).
    5. 5)
      • 24. Electrical Transient Analyzer Program (ETAP), Operations Technology, Inc. (OTI), ETAP 12.6.0, May 2014, available at www.etap.com.
    6. 6)
      • 21. Huang, L., Chen, X., Yan, H.: ‘Study of unequally spaced grounding groups’, IEEE Trans. Power Deliv., 1998, 10, (2), pp. 716722.
    7. 7)
      • 31. Guemes-Alonso, J.A., Hernando-Fernandez, F.E., Rodriguez-Bona, F., et al: ‘A practical approach for determining the ground resistance of grounding grids’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 12611266.
    8. 8)
      • 33. Maxwell, J.C.: ‘A treatise on electricity and magnetism’ (Clarendon Press, UK, 1873), pp. 441444.
    9. 9)
      • 37. Dawalibi, F., Mukhedkar, D.: ‘Optimum design of substation grounding in a two layer earth structure: Part I - Analytical study’, IEEE Trans. Power Appar. Syst., 1975, 94, (2), pp. 252261.
    10. 10)
      • 23. Sima, W., Wu, P., Yuan, T., et al: ‘Method for the estimation of soil structure in the vicinity of a grounding system’, IET Sci., Meas. Technol., 2015, 9, (7), pp. 800806.
    11. 11)
      • 9. Kamel, R., Chaouachi, A., Nagasaka, K.: ‘Comparison the performances of three earthing systems for micro-grid protection during the grid connected mode’, Smart Grid Renew. Energy, 2011, 2, (3), pp. 206215.
    12. 12)
      • 16. He, J., Zeng, R., Gao, Y., et al: ‘Seasonal influences on safety of substation grounding system’, IEEE Trans. Power Deliv., 2003, 18, (3), pp. 788795.
    13. 13)
      • 36. Nahman, J., Paunovic, I.: ‘Resistance to earth of earthing grids buried in multi-layer soil’, Electr. Eng., 2006, 88, pp. 281287.
    14. 14)
      • 5. IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces, IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), vol., no., pp.1-138, 6 April 2018.
    15. 15)
      • 30. Ayodele, T.R., Ogunjuyigbe, A.S.O., Oyewole, O.E.: ‘Comparative assessment of the effect of earthing grid configurations on the earthing system using IEEE and finite element methods’, Eng. Sci. Technol. Int. J., 2018, 21, (5), pp. 970983, ISSN 2215-0986.
    16. 16)
      • 32. Guemes, J, Rodriguez, F, Ruiz, J, et al: ‘Determination of the ground resistance and distribution of potentials in grounding grids using FEM’, Renew. Energy Power Qual. J., 2003, 1, pp. 36036310.24084/repqj01.382.
    17. 17)
      • 34. Heppe, A.J.: ‘Computation of potential at surface above an energized grid or other electrode, allowing for non-uniform current distribution’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, (6), pp. 19781989.
    18. 18)
      • 2. Lasseter, R.H.: ‘Certs microgrid’. IEEE Int. Conf. on System of Systems Engineering, San Antonio, TX, 2007, pp. 15.
    19. 19)
      • 35. Sunde, E.D.: ‘Earth conduction effects in transmission systems’ (D. Van Nostrand Company, Princeton, N. J., 1949).
    20. 20)
      • 4. Quezada, V.H.M., Abbad, J.R., Roman, T.G.S.: ‘Assessment of energy distribution losses for increasing penetration of distributed generation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 533540.
    21. 21)
      • 18. El-Refaie, E.-S.M., Elmasry, S.E., Abd Elrahman, M.K., et al: ‘Achievement of the best design for unequally spaced grounding grids’, Ain Shams Eng. J., 2015, 6, (1), pp. 171179, ISSN 2090-4479.
    22. 22)
      • 15. He, J., Gao, Y., Zeng, R., et al: ‘Optimal design of grounding system considering the influence of seasonal frozen soil layer’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 107115.
    23. 23)
      • 25. Dalziel, C.F.: ‘Electric shock hazard’, IEEE Spectr., 1972, 9, (2), pp. 4150.
    24. 24)
      • 11. Kumar, D., Zare, F., Ghosh, A.: ‘DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects’, IEEE Access, 2017, 5, pp. 1223012256.
    25. 25)
      • 7. Mohammadi, J., Badrkhani Ajaei, F., Stevens, G.: ‘Grounding the AC microgrid’, IEEE Trans. Ind. Appl., 2018, 55, pp. 98105. doi: 10.1109/TIA.2018.2864106.
    26. 26)
      • 26. Radakovic, Z., Paunovic, N., Milosevic, V., et al: ‘Generating simple-to-apply comprehensive engineering recommendation for earthing safety in systems with solidly earthed neutral’, IET Gener. Transm. Distrib., 2015, 9, (16), pp. 25172525.
    27. 27)
      • 27. Bhatia, K., Darji, P.B., Jariwala, H.R.: ‘Safety analysis of TN-S and TN-C-S earthing system’. 2018 IEEE Int. Conf. on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/IandCPS Europe), Palermo, Italy, 2018, pp. 16.
    28. 28)
      • 10. Li, B., Li, Y., Ma, T.: ‘Research on earthing schemes in LV microgrids’. 2011 Int. Conf. on Advanced Power System Automation and Protection, Beijing, 2011, pp. 10031007.
    29. 29)
      • 20. Dawalibi, F., Barbeito, N.: ‘Measurements and computations of the performance of grounding systems buried in multilayer soils’, IEEE Trans. Power Deliv., 1991, 6, (4), pp. 14831490.
    30. 30)
      • 12. IEEE Recommended practice for grounding of industrial and commercial power systems’, IEEE STD 142-2007 (Revision of IEEE STD 142-1991), pp.1-225, Nov. 2007.
    31. 31)
      • 3. Jayawarna, N., Jenkins, N., Barnes, M., et al: ‘Safety analysis of a microgrid’. Int. Conf. on Future Power Systems, Amsterdam, Netherlands, 2005, pp. 15.
    32. 32)
      • 6. Bui, D.M., Chen, S.L.: ‘Fault protection solutions appropriately proposed for ungrounded low-voltage AC microgrids: review and proposals’, Renew. Sustain. Energy Rev., 2017, 75, pp. 11561174.
    33. 33)
      • 1. Walling, R.A., Saint, R., Dugan, R.C., et al: ‘Summary of distributed resources impact on power delivery systems’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 16361644.
    34. 34)
      • 22. Ghoneim, S.S.M., Taha, I.B.M.: ‘Control the cost, touch and step voltages of the grounding grids design’, IET Sci. Meas. Technol., 2016, 10, (8), pp. 943951.
    35. 35)
      • 13. IEEE Guide for Safety in AC Substation Grounding’, in IEEE Std 80-2013 (Revision of IEEE Std 80-2000/ Incorporates IEEE Std 80-2013/Cor 1-2015), pp.1-226, 15 May 2015.
    36. 36)
      • 19. Dawalibi, F.P., Ma, J., Southey, R.D.: ‘Behaviour of grounding systems in multilayer soils: a parametric analysis’, IEEE Trans. Power Deliv., 1994, 9, (1), pp. 334342.
    37. 37)
      • 8. Kamel, R., Chaouachi, A., Nagasaka, K.: ‘Design and testing of three earthing systems for micro-grid protection during the islanding mode', Smart Grid Renew Energy, 2010, 1, (3), pp. 132142.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0168
Loading

Related content

content/journals/10.1049/iet-smt.2019.0168
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address