http://iet.metastore.ingenta.com
1887

Electromagnetic transients modelling of split-winding traction transformers for frequency response analysis

Electromagnetic transients modelling of split-winding traction transformers for frequency response analysis

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

High-frequency electromagnetic transients modelling of voltage and current distribution due to electromagnetic transients are of great importance in transformer design. In this study, a 2D and 3D finite-element, coupled field-circuit and modified detailed model is introduced for high-frequency electromagnetic transient studies in split-winding traction transformers. The proposed coupled field-circuit approach uses a 2D finite-element model that is coupled with an external circuit to analyse the electromagnetic transient behaviour of the split-winding traction transformer. Also, a detailed model is introduced for this type of transformer and its results are compared with the introduced coupled field-circuit model and complete 3D finite-element model. After validating the introduced models, the models are employed to analyse the frequency response of the split-winding traction transformer.

References

    1. 1)
      • 1. Azizian, D., Vakilian, M., Faiz, J.: ‘New multi-winding traction transformer equivalent circuit for short-circuit performance analysis’, Trans. Electr. Energy Syst., 2014, 24, (2), pp. 186202.
    2. 2)
      • 2. Azizian, D.: ‘Windings temperature prediction in split-winding traction transformer’, Turk. J. Electr. Eng. Comput. Sci., 2016, 24, (4), pp. 30113022.
    3. 3)
      • 3. Abetti, P.A.: ‘Transformer models for the determination of transient voltages’, Trans. Am. Inst. Electr. Eng. III, Power Appar. Syst., 1953, 72, (2), pp. 468480.
    4. 4)
      • 4. Lewis, T.J.: ‘The transient behaviour of ladder networks of the type representing transformer and machine windings’, Proc. IEEE – II, Power Eng., 1954, 101, (2), pp. 541553.
    5. 5)
      • 5. Rahimpour, E., Christian, J., Feser, K.: ‘Transfer function method to diagnose axial displacement and radial deformation of transformer windings’, IEEE Trans. Power Deliv., 2003, 18, (2), pp. 493505.
    6. 6)
      • 6. Dent, B.M., Hartill, E.R., Miles, J.G.: ‘A method of analysis of transformer impulse voltage distribution using a digital computer’, Proc. IEE – A, Power Eng., 1958, 105, (23), pp. 445459.
    7. 7)
      • 7. Bigdeli, M., Rahimpor, E., Khatibi, M.: ‘Transient-state modelling of distribution transformers’, Int. Rev. Model. Simul., 2011, 4, (1), pp. 295302.
    8. 8)
      • 8. Eslamian, M., Vahidi, B., Hosseinian, S.H.: ‘Transient simulation of cast-resin dry-type transformers using FEM’, Eur. Trans. Electr. Power, 2011, 21, (1), pp. 363379.
    9. 9)
      • 9. Eslamian, M., Vahidi, B.: ‘New equivalent circuit of transformer winding for the calculation of resonance transients considering frequency-dependent losses’, IEEE Trans. Power Deliv., 2015, 30, (4), pp. 17431751.
    10. 10)
      • 10. Hassan Hosseini, S.M., Baravati, P.R.: ‘New high frequency multi-conductor transmission line detailed model of transformer winding for PD study’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (1), pp. 316323.
    11. 11)
      • 11. Eslamian, M., Vahidi, B., Hosseinian, S.H.: ‘Analytical calculation of detailed model parameters of cast resin dry-type transformers’, Energy Convers. Manage., 2011, 52, (7), pp. 25652574.
    12. 12)
      • 12. Eslamian, M., Vahidi, B., Hosseinian, S.H.: ‘Combined analytical and FEM methods for parameters calculation of detailed model for dry-type transformer’, Simul., Model. Pract. Theory, 2010, 18, (3), pp. 390403.
    13. 13)
      • 13. Eslamian, M., Vahidi, B.: ‘New methods for computation of the inductance matrix of transformer windings for very fast transients studies’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 23262333.
    14. 14)
      • 14. Eslamian, M., Vahidi, B.: ‘Computation of self-impedance and mutual impedance of transformer winding considering the frequency-dependent losses of the iron core’, Electr. Power Compon. Syst., 2016, 44, pp. 12361247.
    15. 15)
      • 15. Wilk, A., Nieznanski, J., Moson, I., et al: ‘Nonlinear equivalent circuit model of a traction transformer for winding internal fault diagnostic purposes’. Int. Conf. on Electrical Machines, Portugal, 2008.
    16. 16)
      • 16. Bigdeli, M., Valii, M., Azizian, D.: ‘Applying intelligent optimization algorithms for evaluation of transformer black box model’. 6th Int. Conf. on Soft Computing Applications, Timisoara, Romania, 2014.
    17. 17)
      • 17. Aghmasheh, R., Rashtchi, V., Rahimpour, E.: ‘Gray box modelling of power transformer windings for transient studies’, IEEE Trans. Power Deliv., 2017, 32, pp. 23502359.
    18. 18)
      • 18. Bjerkan, E., Høidalen, H.K.: ‘High frequency FEM-based power transformer modelling: investigation of internal stresses due to network-initiated overvoltages’. Int. Conf. on Power Systems Transients (IPST'05) in Montreal, Canada, Paper No. IPST05 106, 19–23 June 2005.
    19. 19)
      • 19. Kumbhar, G.B., Kulkarni, S.V.: ‘A directly coupled field-circuit model of a transformer to study surge phenomena and for frequency response analysis’. 18th National Power Systems Conf. (NPSC), India, 2014.
    20. 20)
      • 20. Liu, S., Li, H., Lin, F.: ‘Diagnosis of transformer winding faults based on FEM simulation and on-site experiments’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (6), pp. 37523760.
    21. 21)
      • 21. Nowak, L., Demenko, A., Szela, W.: ‘Comparison of 3D and 2D field-circuit models of power transformer transients’. Symp. on Electromagnetic Phenomena in Nonlinear Circuits (EPNC), Leuven, Belgium, 1–3 July 2002.
    22. 22)
      • 22. Kumbhar, G.B., Kulkarni, S.V.: ‘Analysis of short-circuit performance of split-winding transformer using coupled field-circuit approach’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 936943.
    23. 23)
      • 23. Kumbhar, G.B., Kulkarni, S.V.: ‘Analysis of sympathetic inrush phenomena in transformers using coupled field-circuit approach’. IEEE Power Engineering Society General Meeting, USA, 2007.
    24. 24)
      • 24. Hu, G., Wu, X., Long, F., et al: ‘A 3D-coupled field-circuit model for analyzing the internal short-circuit faults of power transformer’. 2nd Int. Conf. on Mechatronics and Automatic Control, Switzerland, 2015.
    25. 25)
      • 25. Azizian, D., Vakilian, M., Faiz, J., et al: ‘Calculating leakage inductances of split-windings in dry-type traction transformers’, ECTI Trans. Electr. Eng. Electron. Commun., 2012, 10, (1), pp. 99106.
    26. 26)
      • 26. Hayek, J.E., Sobczyk, T.J.: ‘Analytic one-dimensional design method for railways traction transformers’. IEEE Int. Conf. on Electric Machines and Drives, USA, 2003, vol. 3, pp. 17601765.
    27. 27)
      • 27. Hayek, J.E., Sobczyk, T.J.: ‘Equivalent circuit of multi-windings traction transformers including magnetizing currents’. Eighth Int. Conf. on Electrical Machines and Systems (ICEMS), China, 2005, vol. 3, pp. 17401745.
    28. 28)
      • 28. Azizian, D.: ‘Nonlinear behaviour analysis of split-winding dry-type transformer using a new star model and a coupled field-circuit approach’, Arch. Electr. Eng., 2016, 65, p. 773.
    29. 29)
      • 29. Azizian, D., Gharehpetian, G.B.: ‘Split-winding transformer design using new hybrid optimization algorithm based on PSO and I-BB-BC’, IET Sci. Meas. Technol., 2018, 12, (6), pp. 712718.
    30. 30)
      • 30. Gharehpetian, G.B., Mohseni, H., Moller, K.: ‘Hybrid modelling of inhomogeneous transformer winding for very fast transient overvoltage studies’, IEEE Trans. Power Deliv., 1998, 13, (1), pp. 157163.
    31. 31)
      • 31. Fouineau, A., Raulet, M., Lefebvre, B., et al: ‘Semi-analytical methods for calculation of leakage inductance and frequency-dependent resistance of windings in transformers’, IEEE Trans. Magn., 2018, 54, (10), pp. 110.
    32. 32)
      • 32. Ahour, J., Seyedtabaie, S., Gharehpetian, G.B.: ‘Modified transformer winding ladder network model to assess non-dominant frequencies’, IET Electr. Power Appl., 2017, 11, (4), pp. 578585.
    33. 33)
      • 33. Mombello, E.E.: ‘Impedances for the calculation of electromagnetic transients within transformers’, IEEE Trans. Power Deliv., 2002, 17, (2), pp. 479488.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0164
Loading

Related content

content/journals/10.1049/iet-smt.2019.0164
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address