Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Understanding the dielectric and mechanical properties of self-passivated Al–epoxy nanocomposites

Epoxy nano passivated aluminium composites with optimised size and filler contents were fabricated. Variation in contact angle and surface roughness is insignificant with increasing filler into nanocomposites but it showed a drastic reduction on corona ageing. Water droplet initiated corona inception voltage (CIV) is high under the negative DC voltage followed with positive DC and AC voltages. The bandwidth of ultra-high frequency signal generated due to water droplet initiated corona discharge lies in the range of 0.5–1.2 GHz. Surface potential measurements have shown that the decay in the potential was fast initially, and it became slower and sluggish subsequently. The trap energy density versus trap depth plot exhibits shallow traps and deep traps at around 0.8 and 0.87 eV, respectively. Permittivity, conductivity and loss factor have increased with an increase in the filler content in nanocomposites. The bulk resistance and capacitance of samples were determined for obtaining the equivalent parallel RC circuit model. Incorporation of nanofillers increases the glass transition temperature and reduces the tan δ with increasing frequencies as evident from dynamic mechanical analysis studies. A direct correlation is observed between the plasma temperature measured through laser-induced breakdown spectroscopy spectra and hardness of the material.

Inspec keywords: surface potential; drops; plasma temperature; permittivity; resins; nanocomposites; aluminium; electrical resistivity; surface roughness; hardness; glass transition; composite insulating materials; filled polymers; nanomechanics; capacitance; electrical conductivity; dielectric losses; corona; contact angle; RC circuits

Other keywords: hardness; nanofillers; bulk resistance; surface roughness; loss factor; Al; capacitance; optimised size; corona-aged specimen; plasma temperature; UHF signal; positive DC voltages; frequency 0.5 GHz to 1.2 GHz; surface potential measurements; mechanical properties; trap energy density-trap depth plot; deep traps; laser-induced breakdown spectroscopy; water droplet initiated corona inception voltage; filler content; corona ageing; corona discharge; self-passivated Al-epoxy nanocomposites; contact angle; dielectric properties; glass transition temperature; negative DC voltage; dynamic mechanical analysis; epoxy nanopassivated aluminium composites; permittivity; equivalent parallel RC circuit model; electrical conductivity

Subjects: Dielectric loss and relaxation; Solid surface structure; Electrical properties of composite materials (thin films, low-dimensional and nanoscale structures); Fatigue, embrittlement, and fracture; Fatigue, brittleness, fracture, and cracks; Insulation and insulating coatings; Preparation of reinforced polymers and polymer-based composites; Other methods of nanofabrication; Fluid surface energy (surface tension, interface tension, angle of contact, etc.); Dielectric breakdown and discharges; Glass transitions; Dielectric permittivity

References

    1. 1)
      • 15. Du, B.X., Jiang, J.P., Zhang, J.G., et al: ‘Dynamic behavior of surface charge on double-layer oil–paper insulation under pulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 27122719.
    2. 2)
      • 26. Olowojoba, G.B., Kopsidas, S., Eslava, S., et al: ‘A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide’, J. Mater. Sci., 2017, 52, (12), pp. 73237344.
    3. 3)
      • 21. Du, B.X., Li, J., Du, W., et al: ‘Dynamic behavior of surface charge on direct-fluorinated polyimide films’. Proc. of IEEE Int. Conf. on Solid Dielectrics, ICSD, Bologna, Italy, 2013, pp. 329332.
    4. 4)
      • 10. Xu, J., Moon, K.S., Tison, C., et al: ‘A novel aluminum-filled composite dielectric for embedded passive applications’, IEEE Trans. Adv. Packag., 2006, 29, (2), pp. 295306.
    5. 5)
      • 25. Mandal, S.K., Singh, S., Dey, P., et al: ‘Frequency and temperature dependence of dielectric and electrical properties of TFe2O4 (T = Ni, Zn, Zn0.5 Ni0.5) ferrite nanocrystals’, J. Alloys Compd., 2016, 656, pp. 887896.
    6. 6)
      • 14. Gao, Y., Wang, J., Liu, F., et al: ‘Surface potential decay of negative corona charged epoxy/Al2O3 nanocomposites degraded by 7.5-MeV electron beam’, IEEE Trans. Plasma Sci., 2018, 46, (7), pp. 27212729.
    7. 7)
      • 22. Desai, B.M.A., Mishra, P., Vasa, N.J., et al: ‘Understanding the performance of corona aged epoxy nano micro composites’, Micro Nano Lett.., 2018, 13, (9), pp. 12801285.
    8. 8)
      • 1. Wang, Z., Zhou, W., Sui, X., et al: ‘Enhanced dielectric properties and thermal conductivity of Al/CNTs / PVDF ternary composites’, J. Reinf. Plast. Compos., 2015, 34, (14), pp. 11261135.
    9. 9)
      • 12. Tanaka, T., Kozako, M., Fuse, N., et al: ‘Proposal of a multi-core model for polymer nanocomposite dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (4), pp. 669681.
    10. 10)
      • 13. Molinié, P.: ‘Measuring and modeling transient insulator response to charging: the contribution of surface potential studies’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 939950.
    11. 11)
      • 4. Lu, J., Wong, C.P.: ‘Recent advances in high-k nanocomposite materials for embedded capacitor applications’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (5), pp. 13221328.
    12. 12)
      • 28. Djilianova, O., Sadowski, M.J., Skladnik-Sadowska, E.: ‘The Cu spectra as a tool for late plasma focus diagnostics’, J. Phys. Conf. Ser., 2006, 44, (1), pp. 175178.
    13. 13)
      • 19. Moreno, V.M., Gorur, R.S., Kroese, A.: ‘Impact of corona on the long-term performance of nonceramic insulators’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (1), pp. 8095.
    14. 14)
      • 18. Tanaka, T., Imai, T.: ‘Advanced nanodielectrics: fundamentals and applications’ (CRC Press, Singapore, 2017, 1st edn.).
    15. 15)
      • 20. Phillips, A.J., Childs, D.J., Schneider, H.M.: ‘Aging of non-ceramic insulators due to corona from water drops’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 10811086.
    16. 16)
      • 5. Paul, S., Sindhu, T.K.: ‘Effect of filler particle size on electric energy density of epoxy-aluminum nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 27862794.
    17. 17)
      • 7. Elanseralathan, K., Karthick, V., Kumar, R.S.D., et al: ‘Effect of filler concentration on the breakdown strength of epoxy nanocomposites’. 2017 6th Int. Conf. on Computer Applications in Electrical Engineering – Recent Advances (CERA), Roorkee, India, 2017, pp. 226229.
    18. 18)
      • 27. Sarathi, R., Sahu, R.K., Kumar, P.R., et al: ‘Understanding the performance of epoxy nano composites – a physico-chemical approach’, IEEJ Trans. Fundam. Mater., 2006, 126, (11), pp. 11121120.
    19. 19)
      • 23. Paul, S., Sindhu, T.K.: ‘Synthesis and characterization of epoxy-aluminum nanocomposites for energy storage applications’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (5), pp. 21642217.
    20. 20)
      • 8. Paul, S., Sindhu, T.: ‘Development of epoxy-aluminum nanocomposite dielectric material with low filler concentration for embedded capacitor applications’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 460466.
    21. 21)
      • 6. Zhou, W., Yu, D.: ‘Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites’, J. Mater. Sci., 2013, 48, (22), pp. 79607968.
    22. 22)
      • 11. Shahravan, A., Desai, T., Matsoukas, T.: ‘Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials’, ACS Appl. Mater. Interfaces, 2014, 6, (10), pp. 79427947.
    23. 23)
      • 16. Sarathi, R., Animesh, S., Chen, Y., et al: ‘Understanding surface discharge activity with epoxy silicon carbide nanocomposites’, Polym. Eng. Sci., 2017, 57, (12), pp. 13491355.
    24. 24)
      • 3. Zhou, W., Yu, D.: ‘Thermal and dielectric properties of the aluminum particle / epoxy resin composites’, J. Appl. Polym. Sci., 2010, 118, (6), pp. 31563166.
    25. 25)
      • 9. Singha, S., Thomas, M.J.: ‘Dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 1223.
    26. 26)
      • 17. Sarathi, R., Mishra, P., Gautam, R., et al: ‘Understanding the influence of water droplet initiated discharges on damage caused to corona-aged silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 24212431.
    27. 27)
      • 2. Huang, X.Y., Jiang, P.K., Kim, C.U.: ‘Electrical properties of polyethylene/aluminum nanocomposites’, J. Appl. Phys., 2007, 102, (12), p. 124103.
    28. 28)
      • 24. Thakur, S., Rai, R., Bdikin, I., et al: ‘Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics’, Mater. Res., 2016, 19, (1), pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0144
Loading

Related content

content/journals/10.1049/iet-smt.2019.0144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address