http://iet.metastore.ingenta.com
1887

Understanding the dielectric and mechanical properties of self-passivated Al–epoxy nanocomposites

Understanding the dielectric and mechanical properties of self-passivated Al–epoxy nanocomposites

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Epoxy nano passivated aluminium composites with optimised size and filler contents were fabricated. Variation in contact angle and surface roughness is insignificant with increasing filler into nanocomposites but it showed a drastic reduction on corona ageing. Water droplet initiated corona inception voltage (CIV) is high under the negative DC voltage followed with positive DC and AC voltages. The bandwidth of ultra-high frequency signal generated due to water droplet initiated corona discharge lies in the range of 0.5–1.2 GHz. Surface potential measurements have shown that the decay in the potential was fast initially, and it became slower and sluggish subsequently. The trap energy density versus trap depth plot exhibits shallow traps and deep traps at around 0.8 and 0.87 eV, respectively. Permittivity, conductivity and loss factor have increased with an increase in the filler content in nanocomposites. The bulk resistance and capacitance of samples were determined for obtaining the equivalent parallel RC circuit model. Incorporation of nanofillers increases the glass transition temperature and reduces the tan δ with increasing frequencies as evident from dynamic mechanical analysis studies. A direct correlation is observed between the plasma temperature measured through laser-induced breakdown spectroscopy spectra and hardness of the material.

References

    1. 1)
      • 1. Wang, Z., Zhou, W., Sui, X., et al: ‘Enhanced dielectric properties and thermal conductivity of Al/CNTs / PVDF ternary composites’, J. Reinf. Plast. Compos., 2015, 34, (14), pp. 11261135.
    2. 2)
      • 2. Huang, X.Y., Jiang, P.K., Kim, C.U.: ‘Electrical properties of polyethylene/aluminum nanocomposites’, J. Appl. Phys., 2007, 102, (12), p. 124103.
    3. 3)
      • 3. Zhou, W., Yu, D.: ‘Thermal and dielectric properties of the aluminum particle / epoxy resin composites’, J. Appl. Polym. Sci., 2010, 118, (6), pp. 31563166.
    4. 4)
      • 4. Lu, J., Wong, C.P.: ‘Recent advances in high-k nanocomposite materials for embedded capacitor applications’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (5), pp. 13221328.
    5. 5)
      • 5. Paul, S., Sindhu, T.K.: ‘Effect of filler particle size on electric energy density of epoxy-aluminum nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 27862794.
    6. 6)
      • 6. Zhou, W., Yu, D.: ‘Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites’, J. Mater. Sci., 2013, 48, (22), pp. 79607968.
    7. 7)
      • 7. Elanseralathan, K., Karthick, V., Kumar, R.S.D., et al: ‘Effect of filler concentration on the breakdown strength of epoxy nanocomposites’. 2017 6th Int. Conf. on Computer Applications in Electrical Engineering – Recent Advances (CERA), Roorkee, India, 2017, pp. 226229.
    8. 8)
      • 8. Paul, S., Sindhu, T.: ‘Development of epoxy-aluminum nanocomposite dielectric material with low filler concentration for embedded capacitor applications’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 460466.
    9. 9)
      • 9. Singha, S., Thomas, M.J.: ‘Dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 1223.
    10. 10)
      • 10. Xu, J., Moon, K.S., Tison, C., et al: ‘A novel aluminum-filled composite dielectric for embedded passive applications’, IEEE Trans. Adv. Packag., 2006, 29, (2), pp. 295306.
    11. 11)
      • 11. Shahravan, A., Desai, T., Matsoukas, T.: ‘Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials’, ACS Appl. Mater. Interfaces, 2014, 6, (10), pp. 79427947.
    12. 12)
      • 12. Tanaka, T., Kozako, M., Fuse, N., et al: ‘Proposal of a multi-core model for polymer nanocomposite dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (4), pp. 669681.
    13. 13)
      • 13. Molinié, P.: ‘Measuring and modeling transient insulator response to charging: the contribution of surface potential studies’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 939950.
    14. 14)
      • 14. Gao, Y., Wang, J., Liu, F., et al: ‘Surface potential decay of negative corona charged epoxy/Al2O3 nanocomposites degraded by 7.5-MeV electron beam’, IEEE Trans. Plasma Sci., 2018, 46, (7), pp. 27212729.
    15. 15)
      • 15. Du, B.X., Jiang, J.P., Zhang, J.G., et al: ‘Dynamic behavior of surface charge on double-layer oil–paper insulation under pulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 27122719.
    16. 16)
      • 16. Sarathi, R., Animesh, S., Chen, Y., et al: ‘Understanding surface discharge activity with epoxy silicon carbide nanocomposites’, Polym. Eng. Sci., 2017, 57, (12), pp. 13491355.
    17. 17)
      • 17. Sarathi, R., Mishra, P., Gautam, R., et al: ‘Understanding the influence of water droplet initiated discharges on damage caused to corona-aged silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 24212431.
    18. 18)
      • 18. Tanaka, T., Imai, T.: ‘Advanced nanodielectrics: fundamentals and applications’ (CRC Press, Singapore, 2017, 1st edn.).
    19. 19)
      • 19. Moreno, V.M., Gorur, R.S., Kroese, A.: ‘Impact of corona on the long-term performance of nonceramic insulators’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (1), pp. 8095.
    20. 20)
      • 20. Phillips, A.J., Childs, D.J., Schneider, H.M.: ‘Aging of non-ceramic insulators due to corona from water drops’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 10811086.
    21. 21)
      • 21. Du, B.X., Li, J., Du, W., et al: ‘Dynamic behavior of surface charge on direct-fluorinated polyimide films’. Proc. of IEEE Int. Conf. on Solid Dielectrics, ICSD, Bologna, Italy, 2013, pp. 329332.
    22. 22)
      • 22. Desai, B.M.A., Mishra, P., Vasa, N.J., et al: ‘Understanding the performance of corona aged epoxy nano micro composites’, Micro Nano Lett.., 2018, 13, (9), pp. 12801285.
    23. 23)
      • 23. Paul, S., Sindhu, T.K.: ‘Synthesis and characterization of epoxy-aluminum nanocomposites for energy storage applications’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (5), pp. 21642217.
    24. 24)
      • 24. Thakur, S., Rai, R., Bdikin, I., et al: ‘Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics’, Mater. Res., 2016, 19, (1), pp. 18.
    25. 25)
      • 25. Mandal, S.K., Singh, S., Dey, P., et al: ‘Frequency and temperature dependence of dielectric and electrical properties of TFe2O4 (T = Ni, Zn, Zn0.5 Ni0.5) ferrite nanocrystals’, J. Alloys Compd., 2016, 656, pp. 887896.
    26. 26)
      • 26. Olowojoba, G.B., Kopsidas, S., Eslava, S., et al: ‘A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide’, J. Mater. Sci., 2017, 52, (12), pp. 73237344.
    27. 27)
      • 27. Sarathi, R., Sahu, R.K., Kumar, P.R., et al: ‘Understanding the performance of epoxy nano composites – a physico-chemical approach’, IEEJ Trans. Fundam. Mater., 2006, 126, (11), pp. 11121120.
    28. 28)
      • 28. Djilianova, O., Sadowski, M.J., Skladnik-Sadowska, E.: ‘The Cu spectra as a tool for late plasma focus diagnostics’, J. Phys. Conf. Ser., 2006, 44, (1), pp. 175178.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0144
Loading

Related content

content/journals/10.1049/iet-smt.2019.0144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address