access icon free Magnetic equivalent circuit modelling of coaxial magnetic gears considering non-linear magnetising curve

It is necessary to have a model to design magnetic gear (MG) optimally and to investigate the effective parameters on its performance. This study proposed a two-dimensional (2D) model to predict the magnetic components of coaxial MG (CMG). This model is based on the mesh analysis method considering core nonlinear B-H curve. In the proposed model, the radial and tangential components of flux densities, magnetic fluxes as well as the inner/outer rotor torque are estimated by extraction of the magnetic equivalent circuit (MEC). The effect of non-linear B-H magnetising curve is considered on the MEC model and it is compared with linear core (constant probability). Furthermore, the dynamic model of CMG is presented and its torque-angle curve and consequently its pull-out torque is obtained. To validate the proposed model, the 2D MEC model results are compared with results of finite element method analysis.

Inspec keywords: magnetic flux; rotors; finite element analysis; equivalent circuits; magnetic circuits; torque; gears

Other keywords: magnetic equivalent circuit modelling; coaxial magnetic gears; MEC model; nonlinear magnetising curve; torque-angle curve; mesh analysis method; magnetic components; magnetic fluxes; core nonlinear B-H curve; coaxial MG; radial components; flux densities; dynamic model; two-dimensional model; linear core; finite element method analysis; tangential components

Subjects: d.c. machines; Finite element analysis; General circuit analysis and synthesis methods

References

    1. 1)
      • 19. Dianati, B., Heydari, H., Afsari, S.A.: ‘Analytical computation of air-gap magnetic field in a viable superconductive magnetic gear’, IEEE Trans. Appl. Supercond., 2016, 26, (6), pp. 112.
    2. 2)
      • 13. Yao, Y.D., Huang, D.R., Hsieh, C.C., et al: ‘Simulation study of the magnetic coupling between radial magnetic gears’, IEEE Trans. Magn., 1997, 33, (2), pp. 22032206.
    3. 3)
      • 4. Cheng, M., Chau, K., Chan, C., et al: ‘Nonlinear varying-network magnetic circuit analysis for doubly salient permanent-magnet motors’, IEEE Trans. Magn., 2000, 36, (1), pp. 339348.
    4. 4)
      • 5. Hesmondhalgh, D., Tipping, D.: ‘A multielement magnetic gear’, IEE Proc. B, Electr. Power Appl., 1980, 127, (3), pp. 129138.
    5. 5)
      • 20. Lubin, T., Mezani, S., Rezzoug, A.: ‘Analytical computation of the magnetic field distribution in a magnetic gear’, IEEE Trans. Magn., 2010, 46, (7), pp. 26112621.
    6. 6)
      • 16. Gerber, S.: ‘Evaluation and design aspects of magnetic gears and magnetically geared electrical machines’, Phd thesis, Stellenbosch University, Stellenbosch, 2015.
    7. 7)
      • 8. Pakdelian, S., Deshpande, Y.B., Toliyat, H.A.: ‘Design of an electric machine integrated with trans-rotary magnetic gear’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 11801191.
    8. 8)
      • 29. Nakamura, K., Fukuoka, M., Ichinokura, O.: ‘Performance improvement of magnetic gear and efficiency comparison with conventional mechanical gear’, J. Appl. Phys., 2014, 115, (17), pp. 5053.
    9. 9)
      • 21. Shin, H.M., Chang, J.H.: ‘Analytical magnetic field calculation of coaxial magnetic gear with flux concentrating rotor’, IEEE Trans. Magn., 2016, 52, (7), pp. 14.
    10. 10)
      • 15. Muruganandam, G., Padma, S., Selvakumar, P.: ‘Design and implementation of a novel magnetic bevel gear’, Control Eng. Appl. Inf., 2013, 15, (2), pp. 3037.
    11. 11)
      • 32. Ahmed, K., Paul, B.K., Vasudevan, B., et al: ‘Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application’, Results Phys., 2019, 12, p. 20212025.
    12. 12)
      • 10. Kikuchi, S., Tsurumoto, K.: ‘Design and characteristics of a new magnetic worm gear using permanent magnet’, IEEE Trans. Magn., 1993, 29, (6), pp. 29232925.
    13. 13)
      • 31. Ahmed, K., Paul, B.K., Jabin, M.A., et al: ‘FEM analysis of birefringence, dispersion and nonlinearity of graphene coated photonic crystal fiber’, Ceram. Int., 2019, 45, (12), pp. 1534315347.
    14. 14)
      • 6. Tsurumoto, K., Kikuchi, S.: ‘A new magnetic gear using permanent magnet’, IEEE Trans. Magn., 1987, 23, (5), pp. 36223624.
    15. 15)
      • 9. Li, W., Chau, K.T., Li, J.: ‘Simulation of a tubular linear magnetic gear using HTS bulks for field modulation’, IEEE Trans. Appl. Supercond., 2011, 21, (3), pp. 11671170.
    16. 16)
      • 2. Atallah, K., Calverley, S.D., Howe, D.: ‘High-performance magnetic gears’, J. Magn. Magn. Mater., 2004, 272–276, (Supplement), pp. E1727E1729.
    17. 17)
      • 23. Liu, C.-T., Hung, K.-Y., Hwang, C.-C.: ‘Developments of an efficient analytical scheme for optimal composition designs of tubular linear magnetic-geared machines’, IEEE Trans. Magn., 2016, 52, (7), pp. 14.
    18. 18)
      • 12. Yao, Y.D., Huang, D.R., Lee, C.M., et al: ‘Magnetic coupling studies between radial magnetic gears’, IEEE Trans. Magn., 1997, 33, (5), pp. 42364238.
    19. 19)
      • 30. Niguchi, N., Howe, K.: ‘Transmission torque analysis of a novel magnetic planetary gear employing 3-D fem’, IEEE Trans. Magn., 2012, 48, (2), pp. 10431046.
    20. 20)
      • 37. Johnson, M., Gardner, M.C., Toliyat, H.A.: ‘A parameterized linear magnetic equivalent circuit for analysis and design of radial flux magnetic gears—part I: implementation’, IEEE Trans. Energy Convers., 2018, 33, pp. 23512358.
    21. 21)
      • 36. Wu, Y.-C., Jian, B.-S.: ‘Magnetic field analysis of a coaxial magnetic gear mechanism by two-dimensional equivalent magnetic circuit network method and finite-element method’, Appl. Math. Model., 2015, 39, (19), pp. 57465758.
    22. 22)
      • 39. Mallampalli, S., Rallabandi, V.: ‘Parametric study of magnetic gear for Maximum torque transmission’. 2014 IEEE Int. Conf. on Power Electronics, Drives and Energy Systems (PEDES), Mumbai, India, 2014.
    23. 23)
      • 17. Atallah, K., Howe, D.: ‘A novel high-performance magnetic gear’, IEEE Trans. Magn., 2001, 37, (4), pp. 28442846.
    24. 24)
      • 3. Rens, J., Attaallah, K., Calverly, S.D., et al: ‘A novel magnetic harmonic gear’, IEEE Trans. Ind. Appl. Supercond., 2010, 46, (1), pp. 206212.
    25. 25)
      • 26. Abdel-Khalik, A.S., Elshebeny, A.S., Ahmed, S.: ‘Design and evaluation of a magnetic planetary gearbox for compact harsh environments’. SPEEDAM 2010 – Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion, Pisa, Italy, 2010, pp. 11781182.
    26. 26)
      • 22. Desvaux, M., Traullé, B., Latimier, R.L.G., et al: ‘Computation time analysis of the magnetic gear analytical model’, IEEE Trans. Magn., 2017, 53, (5), pp. 19.
    27. 27)
      • 1. Rens, J., Clark, R., Calverley, S., et al: ‘Design, analysis and realization of a novel magnetic harmonic gear’. 2008 18th Int. Conf. on Electrical Machines, Vilamoura, Portugal, 2008.
    28. 28)
      • 7. Pakdelian, S., Toliyat, H.A.: ‘Trans-rotary magnetic gear for wave energy application’. IEEE Power and Energy Society General Meeting, California, USA, 2012, pp. 14.
    29. 29)
      • 38. Fukuoka, M., Nakamura, K., Ichinokura, O.: ‘RNA-based optimum design method for SPM type magnetic gears’, J. Magn. Soc. Jpn., 2018, 33, (2), pp. 784791.
    30. 30)
      • 25. Rahideh, A., Vahaj, A.A., Mardaneh, M., et al: ‘Two-dimensional analytical investigation of the parameters and the effects of magnetisation patterns on the performance of coaxial magnetic gears’, IET Electr. Syst. Transp., 2017, 7, (3), pp. 230245.
    31. 31)
      • 27. Niguchi, N., Hirata, K., Muramatsu, M., et al: ‘Eddy current analysis of magnetic gear employing 3-D FEM’. 2010 14th Biennial IEEE Conf. on Electromagnetic Field Computation (CEFC), Chicago, USA, 2010, vol. 540, (2009), pp. 11.
    32. 32)
      • 18. Mezani, S., Atallah, K., Howe, D.: ‘A high-performance axial-field magnetic gear’, J. Appl. Phys., 2006, 99, (8), pp. 810.
    33. 33)
      • 28. Peng, S., Fu, W.N., Ho, S.L.: ‘A novel triple-permanent-magnet-excited hybrid-flux magnetic gear and its design method using 3-D finite element method’, IEEE Trans. Magn., 2014, 50, (11), pp. 33133327.
    34. 34)
      • 33. Islam, M.S., Paul, B.K., Ahmed, K., et al: ‘Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis’, Alexandria Eng. J., 2018, 57, (3), pp. 14591466.
    35. 35)
      • 35. Fukuoka, M., Nakamura, K., Ichinokura, O.: ‘Dynamic analysis of planetary-type magnetic gear based on reluctance network analysis’, IEEE Trans. Magn., 2011, 47, (10), pp. 24142417.
    36. 36)
      • 34. Paul, B.K., Ahmed, F., Moctader, M.G., et al: ‘Silicon nano crystal filled photonic crystal fiber for high nonlinearity’, Opt. Mater., 2018, 84, pp. 545549.
    37. 37)
      • 14. Liu, Y., Ho, S.L., Fu, W.N.: ‘A novel magnetic gear with intersecting axes’, IEEE Trans. Magn., 2014, 50, (11), pp. 14.
    38. 38)
      • 11. Kikuchi, S., Tsurumoto, K.: ‘Trial construction of a new magnetic skew gear using permanent magnet’, IEEE Trans. Magn., 1994, 30, (6), pp. 47674769.
    39. 39)
      • 24. Ge, Y.-J., Nie, C.-Y., Xin, Q.: ‘A three dimensional analytical calculation of the air-gap magnetic field and torque of coaxial magnetic gears’, Prog. Electromagn. Res., 2012, 131, pp. 391407.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0057
Loading

Related content

content/journals/10.1049/iet-smt.2019.0057
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading