Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Dynamic model to predict the characteristics of the electric arc around a polluted insulator

This study presents a dynamic arc model of a polluted insulator based on the formulation of the Obenaus model and the Hampton criterion for discharge propagation. An experiment was conducted on a practical glass insulator installed in the Algerian network for the purpose of measuring the flashover voltage and estimating the arc parameters (A and N) using a genetic optimisation algorithm. The parameters used in the dynamic model were the arc current, arc length, and arc resistance calculated using MATLAB. Moreover, an attempt was made with finite element software to calculate the voltage and electric-field throughout the insulator surface with and without the presence of contaminants. Finally, the obtained simulation and experimental results showed high performances under operational conditions and respect IEC 60060-1 standard recommendations.

References

    1. 1)
      • 24. Bayadi, A.: ‘Parameter identification of ZnO surge arrester models based on genetic algorithms’, Electr. Power. Syst. Res., 2008, 78, (7), pp. 12041209.
    2. 2)
      • 1. Hampton, B.F.: ‘Flashover mechanism of polluted insulation’, IEE Proc., 1964, 111, (5), pp. 985990.
    3. 3)
      • 12. Chihani, T., Mekhaldi, A., Beroual, A., et al: ‘Model for polluted insulator flashover under AC or DC voltage’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (2), pp. 614622.
    4. 4)
      • 21. Ghosh, P.S., Chatterjee, N.: ‘Polluted insulators flashover model for ac voltage’, IEEE Trans. Dielectr. Electr. Insul., 1995, 2, (1), pp. 128136.
    5. 5)
      • 4. Hadjrioua, F., Mahi, D., Slama, M.E.-A.: ‘Electro-thermal dynamic model using the analytical arc parameters for the prediction of the critical flashover condition on the HVDC polluted insulator’, IEE Gener. Transm. Distrib., 2017, 11, (2), pp. 427436.
    6. 6)
      • 14. Morales, N., Asenjo, E., Valdenegro, A.: ‘Field solution in polluted insulators with non-symmetric boundary conditions’, IEEE Trans. Dielectr. Electr. Insul., 2001, 8, (2), pp. 168172.
    7. 7)
      • 9. Volat, C., Farzaneh, M., Mhaguen, N.: ‘Improved FEM models of one- and two-arcs to predict AC critical flashover voltage of ice covered insulators’, IEEE Trans Dielectr. Electr. Insul., 2011, 18, (2), pp. 393400.
    8. 8)
      • 7. Dhahbi-Megriche, N., Beroual, A.: ‘Dynamic model of discharge propagation on polluted surfaces under impulse voltages’, IEE Proc. Gener. Transm. Distrib., 2000, 147, (5), pp. 279284.
    9. 9)
      • 22. Farzaneh, M., Zhang, J.: ‘Modelling of DC arc discharge on ice surfaces’, IEE Proc. Gener. Transm. Distrib., 2000, 147, (2), pp. 8086.
    10. 10)
      • 16. El-Refaie, E.-S.M., Abd Elrahman, M.K., Mohamed, M.K.: ‘Electric field distribution of optimized composite insulator profiles under different pollution conditions’, Ain Shams Eng. J., 2016, 9, (4), pp. 13491356.
    11. 11)
      • 30. Peyrene, G., Rahal, A., Huraux, C.: ‘Flashover of a liquid conducting film, part 2: time to flashover-mechanisms’, IEEE Trans. Electr. Insul., 1982, 17, (1), pp. 1019.
    12. 12)
      • 29. Gopal, S., Rao, Y.N.: ‘Flashover phenomena of polluted insulators’, IEE Proc., 1984, 131, (4), pp. 140143.
    13. 13)
      • 26. Ghosh, P.S., Chatterjee, N.: ‘Arc propagation over electrolytic surfaces under power frequency voltage’, IEEE Trans. Dielectr. Electr. Insul., 1996, 3, (4), pp. 529536.
    14. 14)
      • 23. Topalis, F.V., Gonos, I.F., Stathopulos, I.A.: ‘Dielectric behaviour of polluted porcelain insulators’, IEE Proc. Gener. Transm. Distrib., 2001, 148, (4), pp. 269274.
    15. 15)
      • 13. Rasolonjanahary, J.L., Krähenbühl, L., Nicolas, A.: ‘Computation of electric fields and potential on polluted insulators using a boundary element method’, IEEE Trans. Magn., 1992, 28, (2), pp. 14731476.
    16. 16)
      • 25. Sundararajan, R., Gorur, R.S.: ‘Dynamic arc modeling of pollution flashover of insulators under DC voltage’, IEEE Trans. Dielectr. Electr. Insul., 1993, 28, (2), pp. 209218.
    17. 17)
      • 2. De la O, A., Gorur, R.S.: ‘Flashover of contaminated non ceramic outdoor insulators in a wet atmosphere’, IEEE Trans. Dielectr. Electr. Insul., 1998, 5, (6), pp. 814823.
    18. 18)
      • 33. Williams, D.L., Haddad, A., Rowlands, A.R., et al: ‘Formation and characterization of dry bands in clean fog on polluted insulators’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (5), pp. 724731.
    19. 19)
      • 32. Wilkins, R., Al-Baghdadi, A.A.J.: ‘Arc propagation along an electrolyte surface’, Proc. IEE, 1972, 119, (2), pp. 18861892.
    20. 20)
      • 6. Beroual, A.: ‘Electronic and gaseous processes in the breakdown phenomena of dielectric liquids’, J. Appl. Phys., 1993, 73, (9), pp. 45284533.
    21. 21)
      • 11. Slama, M.E.-A., Beroual, A., Hadi, H.: ‘Influence of the linear non-uniformity of pollution layer on the insulator flashover under impulse voltage – estimation of the effective pollution thickness’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (2), pp. 384392.
    22. 22)
      • 18. Subba Reddy, B., Sultan, N.A., Monika, P.M., et al: ‘Simulation of potential and electric field for high voltage ceramic disc insulators’. Fifth Int. Conf. on Industrial and Information Systems (ICIIS), India, 2010, pp. 526531.
    23. 23)
      • 20. Wilkins, R.: ‘Flashover voltage of high voltage insulators with uniform surface pollution films’, Proc. IEE, 1969, 116, (3), pp. 457465.
    24. 24)
      • 17. Slama, M.El-A., Abed, M.El-A., Hadi, H., et al: ‘HVAC parametric study and numerical calculation of partial discharge inception of water droplet at the surface of hydrophobic insulator’, J. Electr. Eng., 2014, 14, (3), pp. 17.
    25. 25)
      • 19. Kontargyri, V.T., Gonos, I.F., Stathopulos, I.A.: ‘Measurement and simulation of the electric field of high voltage suspension insulators’, Eur. Trans. Electr. Power, 2009, 19, (3), pp. 509517.
    26. 26)
      • 15. Arshad Nekahi, A., McMeekin, S.G., Farzaneh, M.: ‘Numerical computation of electric field and potential along silicone rubber insulators under contaminated and dry band conditions’, 3D Res., 2016, 7, (3), pp. 110.
    27. 27)
      • 3. Obenaus, F.: ‘Die vbersehlagspannung verwhmutrter isolatoren’, ETZ, 1935, 56, pp. 369370.
    28. 28)
      • 8. Dhahbi-Megriche, N., Beroual, A.: ‘Flashover dynamic model of polluted insulators under ac voltage’, IEEE Trans. Dielectr. Electr. Insul., 2000, 7, (2), pp. 283289.
    29. 29)
      • 27. Teguar, M.: ‘Modélisations d'isolateurs pollués soumis à divers paramètres électro géométriques’. PhD thesis, National Polytechnic School, El-Harrach, Algiers University, 2003.
    30. 30)
      • 31. Matsuo, H., Fujishima, T., Yamashita, T., et al: ‘Propagation velocity and photoemission intensity of a local discharge on an electrolytic surface’, IEEE Trans. Dielectr. Electr. Insul., 1996, 3, (3), pp. 444449.
    31. 31)
      • 5. El-Zohri, E.H., Ziedan, H., Procházka, R.: ‘A new proposed dynamic arc model for flashover performance of a non-uniform polluted insulator string under HVAC stress’, Electr. Power Syst. Res., 2015, 119, pp. 278286.
    32. 32)
      • 28. Mekhaldi, A.: ‘Etude des phénomènes de conduction et de décharge électrique sur des surfaces isolantes polluées sous tension alternative 50 Hz’. PhD thesis, National Polytechnic School, El-Harrach, Algiers University, 1999.
    33. 33)
      • 10. Tavakoli, C., Farzaneh, M., Fofana, I., et al: ‘Dynamics and modeling of AC arc on surface of ice’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (6), pp. 12781285.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0029
Loading

Related content

content/journals/10.1049/iet-smt.2019.0029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address