http://iet.metastore.ingenta.com
1887

Determination of electrical percolation threshold of carbon nanotube-based epoxy nanocomposites and its experimental validation

Determination of electrical percolation threshold of carbon nanotube-based epoxy nanocomposites and its experimental validation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The electrical conductivity of polymer nanocomposites plays a critical role in applications like aerospace and electromagnetic shielding. Electrical conductivity and other electromagnetic parameters of carbon nanotube (CNT)-based epoxy nanocomposites are being analysed in this work for their suitability in electromagnetic shielding. Unfilled epoxy and CNT epoxy nanocomposite samples with various filler loadings are prepared. Impedance measurements are conducted over the frequency range of 20 Hz–10 MHz. Micromechanics model is used for the theoretical estimation of electrical conductivity of CNT-based epoxy nanocomposites. Interface thickness in the conventional model is modified to avoid the overestimation of electrical conductivity. DC conductivity of nanocomposites determined experimentally is found to obey classical law of percolation theory and percolation threshold is determined to be 0.17 wt% which agrees well with theoretical value of 0.18 wt% obtained using modified micromechanics model. AC conductivity is found to obey universal dynamic response. Dipolar polarisation mechanism is prominent in the tested frequency range whose frequency of occurrence increases with CNT content due to a greater number of interfaces formed between CNT and epoxy. CNT epoxy nanocomposites are found to have negative permeability thus acting as absorbers in electromagnetic shielding.

References

    1. 1)
      • 1. Hu, N., Masuda, Z., Yan, C., et al: ‘The electrical properties of polymer nanocomposites with carbon nanotube fillers’, Nanotechnology, 2008, 19, (21), p. 215701.
    2. 2)
      • 2. Simcha, S., Dotan, A., Kenig, S., et al: ‘Characterization of hybrid epoxy nanocomposites’, Nanomaterials, 2012, 2, pp. 348365.
    3. 3)
      • 3. Bal, S.: ‘Dispersion and reinforcing mechanism of carbon nanotubes in epoxy nanocomposites’, Bull. Mater. Sci., 2010, 33, (1), pp. 2731.
    4. 4)
      • 4. Yang, Y., Gupta, M.C., Zalameda, J.N., et al: ‘Dispersion behaviour, thermal and electrical conductivities of carbon nanotube-polystyrene nanocomposites’, Micro Nano Lett., 2008, 3, pp. 3540.
    5. 5)
      • 5. Bellucci, S., Micciulla, F., Sacco, I., et al: ‘Mechanical and electrical characterization of epoxy nanocomposites for electromagnetic shielding devices in aerospace applications’. 2009 IEEE Int. Symp. on Electromagnetic Compatibility, Austin, 2009, pp. 8996.
    6. 6)
      • 6. Chakraborty, A.K., Plyhm, T., Barbezat, M., et al: ‘Carbon nanotube (CNT)-epoxy nanocomposites: a systematic investigation of CNT dispersion’, J. Nanopart. Res., 2011, 13, (12), pp. 64936506.
    7. 7)
      • 7. Kim, Y.J., Shin, T.S., Choi, H.D., et al: ‘Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites’, Carbon NY, 2005, 43, pp. 2330.
    8. 8)
      • 8. Feng, C., Jiang, L.: ‘Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites’, Compos. Part A: Appl. Sci. Manuf., 2013, 47, pp. 143149.
    9. 9)
      • 9. Chang, L., Friedrich, K., Ye, L., et al: ‘Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites’, J. Mater. Sci., 2009, 44, pp. 40034012.
    10. 10)
      • 10. Kirkpatrick, S.: ‘Percolation and conduction’, Rev. Mod. Phys., 1973, 45, pp. 574588.
    11. 11)
      • 11. Lu, W.B., Chou, T.W., Thostenson, E.T.: ‘A three-dimensional model of electrical percolation thresholds in carbon nanotube-based composites’, Appl. Phys. Lett., 2010, 96, p. 223106.
    12. 12)
      • 12. Vas, J.V., Thomas, M.J.: ‘Monte Carlo modelling of percolation and conductivity in carbon filled polymer nanocomposites’, IET Sci. Meas. Technol., 2018, 12, (1), pp. 98105.
    13. 13)
      • 13. Pradhan, D.K., Choudhary, R.N.P., Samantaray, B.K.: ‘Studies of structural, thermal and electrical behavior of polymer nanocomposite electrolytes’, eXPRESS Polym. Lett., 2008, 2, (9), pp. 630638.
    14. 14)
      • 14. Seidel, G.D., Lagoudas, D.C.: ‘A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites’, J. Compos. Mater., 2009, 43, pp. 917941.
    15. 15)
      • 15. Zhang, Y., Li, H., Liu, P., et al: ‘Study on electrical properties and thermal conductivity of carbon nanotube/epoxy resin nanocomposites with different filler aspect ratios’. 2016 IEEE Int. Conf. on High Voltage Engineering and Application (ICHVE), Chengdu, 2016, pp. 14.
    16. 16)
      • 16. Yan, K.Y., Xue, Q.Z., Zheng, Q.B., et al: ‘The interface effect of the effective electrical conductivity of carbon nanotube composites’, Nanotechnology, 2007, 18, p. 255705.
    17. 17)
      • 17. Taya, M.: ‘Electronic composites’ (Cambridge University Press, UK, 2005).
    18. 18)
      • 18. Mohan, L., Sunitha, K., Sindhu, T.K.: ‘Modelling of electrical percolation and conductivity of carbon nanotube based polymer nanocomposites’. 2018 IEEE Int. Symp. on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symp. on Electromagnetic Compatibility (EMC/APEMC), Singapore, 2018, pp. 919924.
    19. 19)
      • 19. da Silva Leite Coelho, P.H., Marchesin, M.S., Morales, A.R., et al: ‘Electrical percolation, morphological and dispersion properties of MWCNT/PMMA nanocomposites’, Mat. Res., 2014, 17, (1), pp. 127132.
    20. 20)
      • 20. El Hasnaoui, M., Graca, M.P.F., Achour, M.E., et al: ‘Effect of temperature on the electrical properties of copolymer/carbon black mixtures’, J. Non-Cryst. Solids, 2010, 356, pp. 15361541.
    21. 21)
      • 21. Takeda, T., Shindo, Y., Kuronuma, Y., et al: ‘Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites’, Polymer, 2011, 52, pp. 38523856.
    22. 22)
      • 22. Abazine, K., El Hasnaoui, M., Graça, M.P.F., et al: ‘Electrical conductivity of multiwalled carbon nanotubes/polyester polymer nanocomposites’, J. Compos. Mater., 2016, 50, (23), pp. 32833290.
    23. 23)
      • 23. Simmons, J.G.: ‘Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film’, J. Appl. Phys., 1963, 34, pp. 17931803.
    24. 24)
      • 24. Deng, F., Zheng, Q.S.: ‘An analytical model of effective electrical conductivity of carbon nanotube composites’, Appl. Phys. Lett., 2008, 92, p. 071902.
    25. 25)
      • 25. Tang, L.-C., Zhang, Z.: ‘Dielectric properties of carbon nanotubes/epoxy composites’, J. Nanosci. Nanotechnol., 2013, 12, pp. 16.
    26. 26)
      • 26. Wan, M., Srivastava, A.K., Dhawan, P.K., et al: ‘High dielectric response of 2Dpolyaniline nanoflake based epoxy nanocomposites’, RSC Adv., 2015, 5, pp. 4842148425.
    27. 27)
      • 27. Al-Saleh, M.H., Al-Anid, H.K., Hussain, Y.A., et al: ‘Impedance characteristics and conductivity of CNT/ABS nanocomposites’, J. Phys. D Appl. Phys., 2013, 46, (38), p. 385305.
    28. 28)
      • 28. Xu, D., Sridhar, V., Mahapatra, S.P., et al: ‘Dielectric properties of exfoliated graphite reinforced flouroelastomer composites’, J. Appl. Poly. Sci., 2009, 111, (3), pp. 13581368.
    29. 29)
      • 29. Lovat, G., Celozzi, S.: ‘Shielding effectiveness of planar negative-permeability screens’. 2008 IEEE Int. Symp. on Electromagnetic Compatibility, Detroit, MI, 2008, pp. 16.
    30. 30)
      • 30. Gholipur, R., Bahari, A.: ‘Random nanocomposites as metamaterials: preparation and investigations at microwave region’, Opt. Mater., 2015, 50, pp. 175183.
    31. 31)
      • 31. Zhang, W., Xiong, H., Wang, S., et al: ‘Electromagnetic characteristics of carbon nanotube film materials’, Chin. J. Aeronaut., 2015, 28, (4), pp. 12451254.
    32. 32)
      • 32. Yao, X., Kou, X., Qiu, J.: ‘Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability’, Carbon. NY, 2016, 107, pp. 261267.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0011
Loading

Related content

content/journals/10.1049/iet-smt.2019.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address