access icon free 0.8-V 1.4-nW multi-decade frequency range true RMS to DC converter based on two-quadrant current squarer circuit

A low-voltage ultra-low-power two-quadrant current squarer based-true RMS to DC converter circuit is presented in this study. The proposed current squarer is based on two translinear loops with matched NMOS transistors operating in the weak inversion region. Ultra-low-power dissipation of 1.4 nW, multi-decade frequency range of 0.5 Hz–55 kHz and large input dynamic range of 72 pA–1 nA (with error <3%) are the main achievements of the proposed design while constructed of only ten transistors. Post-layout simulations with 0.8-V supply voltage using HSPICE software in 0.18 μm TSMC CMOS process (level-49 parameters) verified the good functionality of the proposed circuit. Moreover, Monte Carlo analysis is performed to validate the satisfactory PVT robustness and reliability of the design's performance.

Inspec keywords: low-power electronics; CMOS integrated circuits; Monte Carlo methods; integrated circuit design; frequency convertors

Other keywords: Monte Carlo analysis; ultra-low-power dissipation; voltage 0.8 V; matched NMOS transistors; DC converter circuit; multidecade frequency range true RMS to DC converter circuits; current 72 nA to 1 nA; TSMC CMOS process; frequency 0.5 Hz to 55.0 kHz; translinear loops; two-quadrant current squarer circuit; PVT robustness; power 1.4 nW; low-voltage ultra-low-power two-quadrant current squarer based-true RMS; V; HSPICE software; design performance reliability; size 0.18 mum; post-layout simulations

Subjects: Semiconductor integrated circuit design, layout, modelling and testing; Convertors; Monte Carlo methods; CMOS integrated circuits

References

    1. 1)
      • 30. Available at https://web.engr.oregonstate.edu/~moon/ece323/hspice98/.
    2. 2)
      • 17. Farshidi, E., Asiaban, H.: ‘A new true RMS-to-DC converter using up–down translinear loop in CMOS technology’, Analog Integr. Circuit Signal Process., 2012, 70, (3), pp. 385390.
    3. 3)
      • 6. Mulder, J., Van Der Woerd, A.C., Serdijn, W.A., et al: ‘An RMS-DC converter based on the dynamic translinear principle’, IEEE J. Solid-State Circuits, 1997, 32, (7), pp. 11461150.
    4. 4)
      • 19. Danesh, M.H., Nikseresht, S., Dehdast, M.: ‘A current-mode RMS-to-DC converter based on translinear principle’, Int. J. Electr. Electron. Eng. (IJEEE), 2013, 3, (1), pp. 9093.
    5. 5)
      • 2. Petrovic, P.B.: ‘Modified formula for calculation of active power and root-mean-square value of band-limited alternating current signals’, IET Sci. Meas. Technol., 2012, 6, (6), pp. 510518.
    6. 6)
      • 7. Surakampontorn, W., Kumwachara, K.: ‘A dual translinear-based true RMS-to-DC converter’, IEEE Trans. Instrum. Meas., 1999, 47, (2), pp. 459464.
    7. 7)
      • 25. Arraiza, M.M., De La Cruz Blas, C.A., Miguel, J.M.A., et al: ‘A 1.2 V current-mode RMS-to-DC converter based on a novel two-quadrant electronically simulated MOS translinear loop’, IEEE Trans. Circuits Syst. II, Express Briefs, 2019, pp. 11, https://ieeexplore.ieee.org/abstract/document/8728134.
    8. 8)
      • 28. Maryan, M.M., Ghanaatian, A., Azhari, S.J., et al: ‘Low-power high-speed analog multiplier/divider based on a new current squarer circuit’, Arab J. Sci. Eng., 2018, 43, (6), pp. 29092918.
    9. 9)
      • 14. Farshidi, E.: ‘A current-mode true RMS-DC converter based on electronically simulated translinear principle’. Int. Conf. on Signals, Circuits and Systems, Monastir, Tunisia, 2008, pp. 14.
    10. 10)
      • 9. Wang, Zh.: ‘Novel pseudo RMS current converter for sinusoidal signals using a CMOS precision current rectifier’, IEEE Trans. Instrum. Meas., 1990, 39, (4), pp. 670672.
    11. 11)
      • 29. Serrano-Gotarredona, T., Linares-Barranco, B., Andreou, A.G.: ‘A general translinear principle for sub-threshold MOS transistors’, IEEE Trans Circuits Syst-I: Fundam. Theory Appl., 1999, 46, (5), pp. 607616.
    12. 12)
      • 31. Available at http://www.physionet.org/cgi-bin/atm/ATM.
    13. 13)
      • 13. Farshidi, E., Sayedi, S.M.: ‘A micropower multi decade dynamic range current-mode true RMS-to-DC’. Proc. of the 50th IEE Circuits Systems Int., Montreal, Canada, 2007, pp. 14931496.
    14. 14)
      • 1. Richman, P.L.: ‘A new wideband true RMS-to-DC converter’, IEEE Trans. Instrum. Meas., 1967, IM-16, (2), pp. 129134.
    15. 15)
      • 23. Minaei, Sh., Psychalinos, C.: ‘Two-quadrant fully integrable rms-to-dc converter for handling low-frequency signals’, Int. J. Electron. Commun. (AEÜ), 2015, 69, (12), pp. 18971901.
    16. 16)
      • 24. Maryan, M.M., Azhari, S.J.: ‘CMOS design of computational current-mode static and dynamic functions based on analog translinear cell’, Comput. Electr. Eng., 2018, 68, pp. 629645.
    17. 17)
      • 22. Shaterian, M., Twigg, Ch.M., Azhari, S.J.: ‘MTL-based implementation of current-mode CMOS RMS-to-DC converters’, Int. J. Circuit Theory Appl., 2015, 43, (6), pp. 793805.
    18. 18)
      • 16. Kompitaya, P., Kaewdang, Kh.: ‘A low-voltage low-power CMOS weak inversion true RMS-to-DC converter’. Electronics, Computer, Telecommunications and Information Technology (ECTI), Khon Kaen, Thailand, 2011, pp. 9497.
    19. 19)
      • 5. Wassenur, R.F., Seevinck, E., Van Leeuwen, M.G., et al: ‘New techniques for high-frequency RMS-to-DC conversion based on a multifunctional V-to-I convertor’, IEEE J. Solid-State Circuits, 1988, 23, (3), pp. 802815.
    20. 20)
      • 8. Kaewdang, Kh., Kumwachara, K., Surakampontorn, W.: ‘A translinear-based true RMS-to-DC converter using only npn BJTs’, Int. J. Electron. Commun. (AEÜ), 2009, 63, (6), pp. 472477.
    21. 21)
      • 11. Kaewdang, Kh., Kumwachara, K., Surakampontorn, W.: ‘A simple wide-band CMOS based true RMS-to-DC converter’, Int. J. Electron., 2004, 91, (7), pp. 407420.
    22. 22)
      • 18. Farshidi, E., Ghanavati Nejad, T.: ‘A new two-quadrant squarer/divider circuit for true RMS-to-DC converters in MOS technology’, Measurement, 2012, 45, (4), pp. 778784.
    23. 23)
      • 12. De La Cruz-Blas, C.A., López-Martín, A.J., Carlosena, A., et al: ‘1.5-V current-mode CMOS true RMS–DC converter based on class-AB transconductors’, IEEE Trans. Cir. Syst.-II, 2005, 52, (7), pp. 376379.
    24. 24)
      • 3. Zidi, M., Asfour, A., Yonnet, J.-P.: ‘RMS-to-DC converter for GMI magnetic sensor’, IEEE Trans. Magn., 2015, 51, (1), pp. 14.
    25. 25)
      • 27. Gilbert, B.: ‘The current-mode muddle’, Int. J. Electron. Commun. (AEÜ), 2018, 83, pp. 398406.
    26. 26)
      • 20. Danesh, M.H., Mahmoudian, E., Emami Fard, A.: ‘A new current-mode squarer circuit for RMS-to-DC converter’, Int. J. Eng. Innov. Technol. (IJEIT), 2013, 3, (2), pp. 14.
    27. 27)
      • 10. Lopez-Martin, A.J., Carlosena, A.: ‘A 1.5 V current-mode CMOS RMS-to-DC converter’, Analog Integr. Circuit Signal Process., 2003, 36, (1), pp. 137143.
    28. 28)
      • 21. Kafe, F., Psychalinos, C.: ‘0.5 V RMS-to-DC converter topologies suitable for implantable biomedical devices’, J. Low-Power Electron., 2014, 10, (3), pp. 373380.
    29. 29)
      • 26. Toumazou, C., Lidgey, F.J., Haigh, D.G.: ‘Analogue IC design: the current-mode approach’ (IEE Press, London, UK, 1990).
    30. 30)
      • 4. Seevinck, E., Wassenaar, R.F., Wong, H.C.K.: ‘A wide-band technique for vector summation and rms–dc conversion’, IEEE J. Solid-State Circuits, 1984, SC-19, (3), pp. 311318.
    31. 31)
      • 15. Farshidi, E., Sayedi, S.M.: ‘A 1.2 V current-mode true RMS–DC converter based on the floating gate MOS translinear principle’, Microelectron. J., 2008, 39, (2), pp. 293298.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0007
Loading

Related content

content/journals/10.1049/iet-smt.2019.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading