access icon free Prediction of salt contamination in the rotating blade of wind turbine under lightning strike occurrence using fuzzy c-means and k-means clustering approaches

This study proposes an alternative methodology for predicting salt contamination in rotating blade of wind turbine under lightning strike using fuzzy c-means (FCM) and k-means (KM) clustering approaches. The salt contamination states of wind turbine blades are classified with four different levels of equivalent salt deposit density (ESDD) classes. The lightning strike experiments are set up for simulating the condition when the blades are struck by lightning with four rotational speeds under various ESDD classes. Then, the absolute peak value of the measured current signals in grounding line using the high-frequency current transformer and the average power are used to represent the input vectors of FCM and KM to predict the class of the salt contamination. The experimental results validated that the proposed approach can effectively classify the measured current signal and accurately predict the ESDD class on lightning strike occurrence.

Inspec keywords: fuzzy set theory; power engineering computing; insulator contamination; blades; wind turbines; pattern clustering

Other keywords: measured current signal; rotating blade; salt contamination states; FCM clustering approach; k-means clustering; rotational speeds; fuzzy c-means; ESDD class; KM clustering approach; equivalent salt deposit density classes; wind turbine blades; lightning strike experiments; ESDD classes; lightning strike occurrence

Subjects: Wind power plants; Combinatorial mathematics; Data handling techniques; Power line supports, insulators and connectors; Combinatorial mathematics; Power engineering computing

References

    1. 1)
      • 1. Grcev, L.: ‘Lightning surge efficiency of grounding grids’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 16921699.
    2. 2)
      • 10. Birlasekaran, S., Weng, H.L.: ‘Comparison of known PD signals with the developed and commercial HFCT sensors’, Int. Trans. Power Deliv., 2007, 22, (3), pp. 15811590.
    3. 3)
      • 28. Montoya, G., Ramirez, I., Montoya, J.I.: ‘Correlation among ESDD, NSDD and leakage current in distribution insulators’, IET Gener. Transm. Distrib., 2004, 151, (3), pp. 334340.
    4. 4)
      • 9. IEC 60507: ‘Artificial pollution tests on high-voltage ceramic and glass insulators to be used on AC systems’, 2013.
    5. 5)
      • 18. José de Jesús, R., David, R.C., Israel, E., et al: ‘ANFIS system for classification of brain signals’, J. Intell. Fuzzy Syst., 2019, 37, (3), pp. 40334041.
    6. 6)
      • 27. Radičević, B.M., Savić, M.S., Madsen, S.F., et al: ‘Impact of wind turbine blade rotation on the lightning strike incidence-A theoretical and experimental study using a reduced-size model’, Energy, 2012, 45, (1), pp. 644654.
    7. 7)
      • 8. Radičević, B.M., Savić, M.S.: ‘Experimental research on the influence of wind turbine blade rotation on the characteristics of atmospheric discharges’, Int. Trans. Ener. Conver., 2011, 26, (4), pp. 11811190.
    8. 8)
      • 25. Lin, Y.H.: ‘Using k-means clustering and parameter weighting for partial-discharge noise suppression’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 23802390.
    9. 9)
      • 15. IEC 60270: ‘High-voltage test techniques-partial discharge measurements’, 2000.
    10. 10)
      • 6. Glushakow, B.: ‘Effective lightning protection for wind turbine generators’, IEEE Trans. Energy Conver., 2007, 22, (1), pp. 214222.
    11. 11)
      • 12. Su, M.S., Chen, J.F., Lin, Y.H.: ‘Phase determination of PD source in a three-phase transmission line based on high frequency equivalent circuit model and signal detection using HFCT’, Int. Trans. Electr. Energy Syst., 2013, 23, (1), pp. 97108.
    12. 12)
      • 19. José de Jesús, R.: ‘SOFMLS: online self-organizing fuzzy modified least-squares network’, IEEE Trans. Fuzzy Syst., 2009, 17, (6), pp. 12961309.
    13. 13)
      • 14. Lee, S.H., Jung, S.Y., Lee, B.W.: ‘Partial discharge measurements of cryogenic dielectric materials in an HTS transformer using HFCT’, IEEE Trans. Appl. Supercond., 2010, 20, (3), pp. 11391142.
    14. 14)
      • 23. Hsieh, J.C., Tai, C.C., Su, M.S., et al: ‘Identification of partial discharge location using probabilistic neural networks and the fuzzy c-means clustering approach’, Electr. Power Compon. Syst., 2014, 42, (1), pp. 6069.
    15. 15)
      • 17. Ghosh, S., Dubey, S.K.: ‘Comparative analysis of k-means and fuzzy c means algorithms’, Int. J. Adv. Comput. Sci. Appl., 2013, 4, (4), pp. 3539.
    16. 16)
      • 5. Zaher, A., McArthur, S.D.J., Infield, D.G.: ‘Online wind turbine fault detection through automated SCADA data analysis’, Wind Energy, 2009, 12, (6), pp. 574593.
    17. 17)
      • 7. Yokoyama, S.: ‘Lightning protection of wind turbine blades’, Electr. Power Syst. Resea., 2013, 94, pp. 39.
    18. 18)
      • 4. Zappala, D., Tavner, P.J., Crabtree, C.J., et al: ‘Side-band algorithm for automatic wind turbine gearbox fault detection and diagnosis’, IET Renew. Power Gener., 2014, 8, (4), pp. 380389.
    19. 19)
      • 2. Hoerauf, R.: ‘Considerations in wind farm grounding designs’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 13481355.
    20. 20)
      • 20. Nguyen, G.C., Le, H.S., Francisco, C.: ‘Dynamic structural neural network’, J. Intell. Fuzzy Syst., 2018, 34, (4), pp. 24792490.
    21. 21)
      • 26. Abd-Elhady, A.M., Sabiha, N.A., Izzularab, M.A.: ‘Experimental evaluation of air-termination systems for wind turbine blades’, Electr. Power Syst. Res., 2014, 107, pp. 133143.
    22. 22)
      • 11. Hu, X., Siew, W.H., Judd, M.D., et al: ‘Transfer function characterization for HFCTs used in partial discharge detection’, Int. Trans. Dielec. Electr. Insul., 2017, 24, (2), pp. 10881096.
    23. 23)
      • 22. Cebeci, Z., Yildiz, F.: ‘Comparison of k-means and fuzzy c-means algorithms on different cluster’, J. Agricultural Informat., 2015, 6, (3), pp. 1323.
    24. 24)
      • 13. Su, M.S., Chen, J.F., Lin, Y.H., et al: ‘Identification of partial discharge location in a power cable using fuzzy inference system and probabilistic neural networks’, Electr. Power Compon. Syst., 2012, 40, (6), pp. 613627.
    25. 25)
      • 30. Kalair, A., Abas, N., Khan, N.: ‘Lightning interactions with humans and lifelines’, J. Lightn. Res., 2013, 5, pp. 1128.
    26. 26)
      • 21. José de Jesús, R., Edwin, L., Jaime, P., et al: ‘Neural network updating via argument Kalman filter for modeling of Takagi-Sugeno fuzzy models’, J. Intell. Fuzzy Syst., 2018, 35, (2), pp. 25852596.
    27. 27)
      • 16. Jipkate, B.R., Gohokar, V.V.: ‘A comparative analysis of fuzzy c-means clustering and k means clustering algorithms’, Int. J. Comput. Eng., 2012, 2, (3), pp. 737739.
    28. 28)
      • 3. Hosseinzadeh, M., Salmasi, F.R.: ‘Analysis and detection of a wind system failure in a micro-grid’, J. Renew. Sustain. Energy, 2016, 8, p. 043302.
    29. 29)
      • 29. IEC 61400–24: ‘Wind turbines – part 24: lightning protection’, 2010.
    30. 30)
      • 24. Su, M.S., Chia, C.C., Chen, C.Y., et al: ‘Classification of partial discharge events in GILBS using probabilistic neural networks and the fuzzy c-means clustering approach’, Electr. Power Energy Syst., 2014, 61, pp. 173179.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5676
Loading

Related content

content/journals/10.1049/iet-smt.2018.5676
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading