access icon free Temperature-dependent effect of gas pressure on electrical tree in XLPE cable

Cross-linked polyethylene (XLPE), which is an important material in the cable insulation, faces the challenge of high temperature with high internal gas pressure during the process of overload. To clarify the impacting mechanism of temperature and gas pressure, this study presents the characteristics of electrical trees and partial discharge (PD) under different gas pressure and different temperature in XLPE cable. Experiments were conducted using XLPE cable insulation as samples. The results show that gas pressure has different effects on the initiation and propagation of electrical trees at different temperatures. XLPE is in the glassy state at low temperature, and the gas pressure suppresses the development of electrical trees during the growth period. When XLPE is in the elastomeric state, the high temperature accelerated the PD under high gas pressure. The analysis shows that more trapped charge and more branch channels will exist at high temperatures with high gas pressure, which is the primary cause behind the development of streamer, thus accelerating the progress of PD. XLPE cable in the case of high temperature and high gas pressure should cause more attention.

Inspec keywords: XLPE insulation; trees (electrical); partial discharges; power cable insulation

Other keywords: high gas pressure; partial discharge; XLPE cable insulation; internal gas pressure; electrical tree; cross-linked polyethylene; temperature-dependent effect; elastomeric state

Subjects: Gas discharges; Organic insulation; Dielectric breakdown and discharges; Power cables

References

    1. 1)
      • 12. Diego, J.A., Belana, J., Òrrit, J., et al: ‘TSDC study of XLPE recrystallization effects in the melting range of temperatures’, J. Phys. D, Appl. Phys., 2006, 33, (9), pp. 19321938.
    2. 2)
      • 21. Lu, B.X., Sun, H.Y., Wu, Q.K.: ‘Characteristics of trichel pulse parameters in negative corona discharge’, IEEE Trans. Plasma Sci., 2017, 45, (8), pp. 21912201.
    3. 3)
      • 4. Chen, X.R., Xu, Y., Cao, X.L., et al: ‘Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (3), pp. 847860.
    4. 4)
      • 14. Yasuo, S.: ‘Influence of antioxidants and cross-linking on the crystallinity of XLPE dielectrics’. Conf. Electrical Insulation and Dielectric Phenomena, Vancouver, BC, Canada, 2007, pp. 719722.
    5. 5)
      • 18. Yamano, Y., Iizuka, M.: ‘Improvement of electrical tree resistance of LDPE by mixed addition of nanoparticles and phthalocyanine’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (1), pp. 329337.
    6. 6)
      • 22. Dissado, L.A., Fothergill, J.C., Wise, N., et al: ‘A deterministic model for branched structures in the electrical breakdown of solid polymeric dielectrics’, J. Phys. D, Appl. Phys., 2000, 33, (19), pp. 109112.
    7. 7)
      • 23. So, G.B., So, H.R., Jin, G.G.: ‘Enhancement of the box-counting algorithm for fractal dimension estimation’, Pattern Recognit. Lett., 2017, 98, pp. 5358.
    8. 8)
      • 7. Du, B.X., Xue, J.S., Su, J.G., et al: ‘Effects of ambient temperature on electrical tree in epoxy resin under repetitive pulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (3), pp. 15271536.
    9. 9)
      • 16. Gutfleisch, F., Niemeyer, L.: ‘Measurement and simulation of PD in epoxy voids’, IEEE Trans. Dielectr. Electr. Insul., 1995, 2, (5), pp. 729743.
    10. 10)
      • 10. Densley, R.J.: ‘An investigation into the growth of electrical trees in XLPE cable insulation’, IEEE Trans. Dielectr. Electr. Insul., 1979, EI-14, (3), pp. 148158.
    11. 11)
      • 9. Mazzanti, G., Montanari, G.C., Dissado, L.A.: ‘Electrical aging and life models: the role of space charge’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 876890.
    12. 12)
      • 2. Alapati, S., Thomas, M.J.: ‘Influence of nano-fillers on electrical treeing in epoxy insulation’, IET Sci. Meas. Technol., 2012, 6, (1), pp. 2128.
    13. 13)
      • 8. Wang, L.A., Cavallini, A., Montanari, G.C.: ‘Time behaviour of gas pressure and PD activity in insulation cavities under AC voltage’. IEEE Annual Report Conf. Electrical Insulation and Dielectric Phenomena (CEIDP), Victoria, BC, Canada, 2010, pp. 14.
    14. 14)
      • 13. Hozumi, N., Okamoto, T., Fukagawa, H.: ‘Simultaneous measurement of microscopic image and discharge pulses at the moment of electrical tree initiation’, Jpn. J. Appl. Phys., 1988, 27, (7), pp. 572576.
    15. 15)
      • 1. Shahsavarian, T., Shahrtash, S.M.: ‘Modelling of aged cavities for partial discharge in power cable insulation’, IET Sci. Meas. Technol., 2015, 9, (6), pp. 661670.
    16. 16)
      • 20. Haque, N., Dalai, S., Chatterjee, B., et al: ‘Studies of the effect of temperature on the charge trapping and de-trapping processes of polymeric insulators through depolarization current measurements’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (3), pp. 18961904.
    17. 17)
      • 15. White, C.C., Wagenblast, J., Shaw, M.T.: ‘Separation, size reduction, and processing of XLPE from electrical transmission and distribution cable’, Polym. Eng. Sci., 2000, 40, (4), pp. 863879.
    18. 18)
      • 3. Jiang, G., Kuang, J., Boggs, S.: ‘Critical parameters for electrical tree formation in XLPE’, IEEE Trans. Power Deliv., 1998, 13, (2), pp. 292296.
    19. 19)
      • 17. Zhang, X.H., Zhang, L., Yue, B., et al: ‘Study on aging of stator bar insulation of generator based on moment characteristics of partial discharge’. Int. Symp. Electrical Insulating Materials, Himeji, Japan, 2001, pp. 701704.
    20. 20)
      • 5. Florkowski, M., Florkowska, B., Zydron, P.: ‘Partial discharge forms for DC insulating systems at higher air pressure’, IET Sci. Meas. Technol., 2016, 10, (2), pp. 150157.
    21. 21)
      • 6. Zuberi, M.U., Masood, A., Husain, E., et al: ‘Estimation of discharge inception voltage at different pressures in the ambient medium of N2’. IEEE PES Transmission & Distribution Conf. Exposition, Chicago, USA, 2008, pp. 14.
    22. 22)
      • 11. Wagner, H., Wartusch, J.: ‘About the significance of peroxide decomposition products in XLPE cable insulations’, IEEE Trans. Dielectr. Electr. Insul., 1977, EI-12, (6), pp. 395401.
    23. 23)
      • 19. Chalashkanov, N.M., Dodd, S.J., Dissado, L.A., et al: ‘Pulse sequence analysis on PD data from electrical trees in flexible epoxy resins’. Conf. Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, 2011, pp. 776779.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5629
Loading

Related content

content/journals/10.1049/iet-smt.2018.5629
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading