access icon free Biodistribution of nanodiamonds in the body of mice using EPR spectrometry

In vitro experiments proved the usefulness of electron paramagnetic resonance (EPR) spectrometry for detecting detonation nanodiamonds (NDs) in samples of biomaterials (blood and homogenates of organs of mice). A characteristic EPR signal (g = 2.003, ΔH ≃ 10 G) was detected in biomaterials containing NDs, and its intensity linearly increased at nanoparticle concentrations of between 1.6 and 200 µg/ml. In vivo experiments demonstrated that EPR spectrometry was effective for monitoring the inter-organ distribution of NDs intravenously injected to mice. In 2.5 h after the injection of NDs, the nanoparticles mainly accumulated in the lungs and liver of the animals – about 25 and 20%, respectively, of the initially injected NDs. The amounts of NDs accumulated in the heart and kidneys were considerably lower. Also, EPR spectrometry did not detect NDs in the blood, spleen, brain, and femoral muscles of mice. Ten days after injection, EPR spectrometry detected redistribution of NDs in mice. The amounts of nanoparticles decreased approximately by a factor of 3.5 in the lungs and increased almost by a factor of 3 in the liver; NDs were detected in the spleen. This study suggests ways to use EPR spectrometry to study the distribution, accumulation, and elimination of detonation NDs injected into laboratory animals.

Inspec keywords: diamond; EPR imaging; biomedical materials; detonation; lung; nanomedicine; blood; kidney; nanoparticles; muscle; cellular biophysics; liver

Other keywords: mice; inter-organ distribution; femoral muscles; initially injected NDs; EPR spectrometry; organ homogenates; lungs; C; detonation NDs; nanoparticle concentrations; brain; heart; characteristic EPR signal; blood; detonation; electron paramagnetic resonance spectrometry; time 2.5 hour; spleen; biomaterials; liver; nanodiamonds; kidneys

Subjects: Nanotechnology applications in biomedicine; Biomedical materials; Cellular biophysics; Patient diagnostic methods and instrumentation; Biomedical magnetic resonance imaging and spectroscopy; Medical magnetic resonance imaging and spectroscopy

References

    1. 1)
      • 3. Kharisov, B.I., Kharissova, O.V., Chavez-Guerrero, L.: ‘Synthesis techniques, properties, and applications of nanodiamonds’, Synth. React. Inorg. Metal-Org. Nano-Met. Chem., 2010, 40, (2), pp. 84101.
    2. 2)
      • 10. Maas, M.: ‘Carbon nanomaterials as antibacterial colloids’, Materials, 2016, 9, (8), pp. 617636.
    3. 3)
      • 9. Bhattacharya, K., Mukherjee, S.P., Gallud, A., et al: ‘Biological interactions of carbon-based nanomaterials: from coronation to degradation’, Nanomed. Nanotechnol. Biol. Med., 2016, 12, (2), pp. 333351.
    4. 4)
      • 1. Krueger, A.: ‘New carbon materials: biological applications of functionalized nanodiamond materials’, Chem. Eur. J., 2008, 14, (5), pp. 13821390.
    5. 5)
      • 4. Mochalin, V.N., Shenderova, O., Ho, D., et al: ‘The properties and applications of nanodiamonds’, Nat. Nanotech., 2012, 7, (1), pp. 1123.
    6. 6)
      • 7. Monaco, A.M., Giugliano, M.: ‘Carbon-based smart nanomaterials in biomedicine and neuroengineering’, Beilstein J. Nanotechnol., 2014, 5, pp. 18491863.
    7. 7)
      • 12. Turcheniuk, K., Mochalin, V.N.: ‘Biomedical applications of nanodiamond’, Nanotechnology, 2017, 28, (25), pp. 127.
    8. 8)
      • 5. Shugalei, I.V., Voznyakovskii, A.P., Garabadzhiu, A.V., et al: ‘Biological activity of detonation nanodiamond and prospects in its medical and biological applications’, Russ. J. Gen. Chem., 2013, 83, (5), pp. 851883.
    9. 9)
      • 23. Purtov, K., Petunin, A., Inzhevatkin, E., et al: ‘Biodistribution of different sized nanodiamonds in mice’, J. Nanosci. Nanotechnol., 2015, 15, (2), pp. 10701075.
    10. 10)
      • 11. Ansari, S.A., Satar, R., Jafri, M.A., et al: ‘Role of nanodiamonds in drug delivery and stem cell therapy’, Iran. J. Biotechnol., 2016, 14, (3), pp. 130141.
    11. 11)
      • 27. Puzyr, A.P., Baron, A.V., Purtov, K.V., et al: ‘Nanodiamonds with novel properties: a biological study’, Diam. Relat. Mater., 2007, 16, (12), pp. 21242128.
    12. 12)
      • 28. Medvedeva, N.N., Zhukov, E.L., Inzhevatkin, E.V., et al: ‘Antitumor properties of modified detonation nanodiamonds and sorbed doxorubicin on the model of Ehrlich ascites carcinoma’, Bull. Exp. Biol. Med., 2016, 160, (3), pp. 372375.
    13. 13)
      • 2. Schrand, A.M., Hens, S.A.C., Shenderova, O.A.: ‘Nanodiamond particles: properties and perspectives for bioapplications’, Crit. Rev. Solid State Mater. Sci., 2009, 34, (1), pp. 1874.
    14. 14)
      • 22. Salaam, A.D., Hwang, P., McIntosh, R., et al: ‘Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer’, Beilstein J. Nanotechnol., 2014, 5, pp. 937945.
    15. 15)
      • 19. Li, D., Chen, X., Wang, H., et al: ‘Cetuximab-conjugated nanodiamonds drug delivery system for enhanced targeting therapy and 3D Raman imaging’, J. Biophotonics, 2017, 10, (12), pp. 16361646.
    16. 16)
      • 21. Chang, I.P., Hwang, K.C., Chiang, C.S.: ‘Preparation of fluorescent magnetic nanodiamonds and cellular imaging’, J. Am. Chem. Soc., 2008, 130, (46), pp. 1547615481.
    17. 17)
      • 13. Martel-Estrada, S.-A.: ‘Recent progress in biomedical applications of nanodiamonds’, Nanosci. Nanotechnol., 2018, 8, (1), pp. 1124.
    18. 18)
      • 17. Zhang, X., Wang, S.Q., Liu, M., et al: ‘Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications’, Toxicol. Res., 2013, 2, (5), pp. 335342.
    19. 19)
      • 29. Puzyr, A.P., Bondar, V.S.: ‘Method of production of nanodiamonds of explosive synthesis with an increased colloidal stability’. RU Patent No. 2252192, 2005.
    20. 20)
      • 26. Bondar, V.S., Puzyr, A.P.: ‘Nanodiamonds for biological investigations’, Phys. Solid State, 2004, 46, (4), pp. 716719.
    21. 21)
      • 32. Wei, Q., Zhan, L., Juanjuan, B., et al: ‘Biodistribution of co-exposure to multi-walled carbon nanotubes and nanodiamonds in mice’, Nanoscale Res. Lett., 2012, 7, (1), pp. 19, Article 473.
    22. 22)
      • 18. Zhao, W., Wei, S., Zhao, H., et al: ‘Enhanced anticancer activity of an intracellularly activatable nanomedicine based on GLYlated nanodiamond’, Diam. Relat. Mater., 2017, 77, pp. 171180.
    23. 23)
      • 8. Rosenholm, J.M., Vlasov, I.I., Burikov, S.A., et al: ‘Nanodiamond-based composite structures for biomedical imaging and drug delivery’, J. Nanosci. Nanotechnol., 2015, 15, (2), pp. 959971.
    24. 24)
      • 25. Solmatova, A.A., Il'in, I.V., Shakhov, F.M., et al: ‘Electron paramagnetic resonance detection of the giant concentration of nitrogen vacancy defects in sintered detonation nanodiamonds’, JETP Lett., 2010, 92, (2), pp. 102106.
    25. 25)
      • 15. El-Say, Kh.M.: ‘Nanodiamond as a drug delivery system: applications and prospective’, J. Appl. Pharm. Sci., 2011, 1, (6), pp. 2939.
    26. 26)
      • 24. Puzyr, A.P., Bondar, V.S., Bukayemsky, A.A., et al: ‘Physical and chemical properties of modified nanodiamonds’, NATO Sci. Ser. II, Math. Phys. Chem., 2005, 192, pp. 261270.
    27. 27)
      • 6. Kaur, P., Badea, I.: ‘Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging’, Int. J. Nanomed., 2013, 8, (1), pp. 203220.
    28. 28)
      • 14. Purtov, K.V., Petunin, A.I., Burov, A.E., et al: ‘Nanodiamonds as a carriers for address delivery of biologically active substances’, Nanoscale Res. Lett., 2010, 5, (3), pp. 631636.
    29. 29)
      • 30. Puzyr, A.P., Neshumayev, D.A., Tarskikh, S.V., et al: ‘Destruction of human blood cells in interaction with detonation nanodiamonds in experiments in vitro’, Diam. Relat. Mater., 2004, 13, (11–12), pp. 20202023.
    30. 30)
      • 31. Yuan, Y., Chen, Y., Lui, J.-H., et al: ‘Biodistribution and fate of nanodiamonds in vivo’, Diam. Relat. Mater., 2009, 18, (1), pp. 95100.
    31. 31)
      • 16. Zhu, Y., Li, J., Zhang, Y., et al: ‘The biocompatibility of nanodiamonds and their application in drug delivery systems’, Theranostics, 2012, 2, (3), pp. 302312.
    32. 32)
      • 20. Roy, U., Drozd, V., Durygin, A., et al: ‘Characterization of nanodiamond-based anti-HIV drug delivery to the brain’, Sci. Rep., 2018, 8, pp. 112.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5594
Loading

Related content

content/journals/10.1049/iet-smt.2018.5594
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading