http://iet.metastore.ingenta.com
1887

Biodistribution of nanodiamonds in the body of mice using EPR spectrometry

Biodistribution of nanodiamonds in the body of mice using EPR spectrometry

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In vitro experiments proved the usefulness of electron paramagnetic resonance (EPR) spectrometry for detecting detonation nanodiamonds (NDs) in samples of biomaterials (blood and homogenates of organs of mice). A characteristic EPR signal (g = 2.003, ΔH ≃ 10 G) was detected in biomaterials containing NDs, and its intensity linearly increased at nanoparticle concentrations of between 1.6 and 200 µg/ml. In vivo experiments demonstrated that EPR spectrometry was effective for monitoring the inter-organ distribution of NDs intravenously injected to mice. In 2.5 h after the injection of NDs, the nanoparticles mainly accumulated in the lungs and liver of the animals – about 25 and 20%, respectively, of the initially injected NDs. The amounts of NDs accumulated in the heart and kidneys were considerably lower. Also, EPR spectrometry did not detect NDs in the blood, spleen, brain, and femoral muscles of mice. Ten days after injection, EPR spectrometry detected redistribution of NDs in mice. The amounts of nanoparticles decreased approximately by a factor of 3.5 in the lungs and increased almost by a factor of 3 in the liver; NDs were detected in the spleen. This study suggests ways to use EPR spectrometry to study the distribution, accumulation, and elimination of detonation NDs injected into laboratory animals.

References

    1. 1)
      • 1. Krueger, A.: ‘New carbon materials: biological applications of functionalized nanodiamond materials’, Chem. Eur. J., 2008, 14, (5), pp. 13821390.
    2. 2)
      • 2. Schrand, A.M., Hens, S.A.C., Shenderova, O.A.: ‘Nanodiamond particles: properties and perspectives for bioapplications’, Crit. Rev. Solid State Mater. Sci., 2009, 34, (1), pp. 1874.
    3. 3)
      • 3. Kharisov, B.I., Kharissova, O.V., Chavez-Guerrero, L.: ‘Synthesis techniques, properties, and applications of nanodiamonds’, Synth. React. Inorg. Metal-Org. Nano-Met. Chem., 2010, 40, (2), pp. 84101.
    4. 4)
      • 4. Mochalin, V.N., Shenderova, O., Ho, D., et al: ‘The properties and applications of nanodiamonds’, Nat. Nanotech., 2012, 7, (1), pp. 1123.
    5. 5)
      • 5. Shugalei, I.V., Voznyakovskii, A.P., Garabadzhiu, A.V., et al: ‘Biological activity of detonation nanodiamond and prospects in its medical and biological applications’, Russ. J. Gen. Chem., 2013, 83, (5), pp. 851883.
    6. 6)
      • 6. Kaur, P., Badea, I.: ‘Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging’, Int. J. Nanomed., 2013, 8, (1), pp. 203220.
    7. 7)
      • 7. Monaco, A.M., Giugliano, M.: ‘Carbon-based smart nanomaterials in biomedicine and neuroengineering’, Beilstein J. Nanotechnol., 2014, 5, pp. 18491863.
    8. 8)
      • 8. Rosenholm, J.M., Vlasov, I.I., Burikov, S.A., et al: ‘Nanodiamond-based composite structures for biomedical imaging and drug delivery’, J. Nanosci. Nanotechnol., 2015, 15, (2), pp. 959971.
    9. 9)
      • 9. Bhattacharya, K., Mukherjee, S.P., Gallud, A., et al: ‘Biological interactions of carbon-based nanomaterials: from coronation to degradation’, Nanomed. Nanotechnol. Biol. Med., 2016, 12, (2), pp. 333351.
    10. 10)
      • 10. Maas, M.: ‘Carbon nanomaterials as antibacterial colloids’, Materials, 2016, 9, (8), pp. 617636.
    11. 11)
      • 11. Ansari, S.A., Satar, R., Jafri, M.A., et al: ‘Role of nanodiamonds in drug delivery and stem cell therapy’, Iran. J. Biotechnol., 2016, 14, (3), pp. 130141.
    12. 12)
      • 12. Turcheniuk, K., Mochalin, V.N.: ‘Biomedical applications of nanodiamond’, Nanotechnology, 2017, 28, (25), pp. 127.
    13. 13)
      • 13. Martel-Estrada, S.-A.: ‘Recent progress in biomedical applications of nanodiamonds’, Nanosci. Nanotechnol., 2018, 8, (1), pp. 1124.
    14. 14)
      • 14. Purtov, K.V., Petunin, A.I., Burov, A.E., et al: ‘Nanodiamonds as a carriers for address delivery of biologically active substances’, Nanoscale Res. Lett., 2010, 5, (3), pp. 631636.
    15. 15)
      • 15. El-Say, Kh.M.: ‘Nanodiamond as a drug delivery system: applications and prospective’, J. Appl. Pharm. Sci., 2011, 1, (6), pp. 2939.
    16. 16)
      • 16. Zhu, Y., Li, J., Zhang, Y., et al: ‘The biocompatibility of nanodiamonds and their application in drug delivery systems’, Theranostics, 2012, 2, (3), pp. 302312.
    17. 17)
      • 17. Zhang, X., Wang, S.Q., Liu, M., et al: ‘Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications’, Toxicol. Res., 2013, 2, (5), pp. 335342.
    18. 18)
      • 18. Zhao, W., Wei, S., Zhao, H., et al: ‘Enhanced anticancer activity of an intracellularly activatable nanomedicine based on GLYlated nanodiamond’, Diam. Relat. Mater., 2017, 77, pp. 171180.
    19. 19)
      • 19. Li, D., Chen, X., Wang, H., et al: ‘Cetuximab-conjugated nanodiamonds drug delivery system for enhanced targeting therapy and 3D Raman imaging’, J. Biophotonics, 2017, 10, (12), pp. 16361646.
    20. 20)
      • 20. Roy, U., Drozd, V., Durygin, A., et al: ‘Characterization of nanodiamond-based anti-HIV drug delivery to the brain’, Sci. Rep., 2018, 8, pp. 112.
    21. 21)
      • 21. Chang, I.P., Hwang, K.C., Chiang, C.S.: ‘Preparation of fluorescent magnetic nanodiamonds and cellular imaging’, J. Am. Chem. Soc., 2008, 130, (46), pp. 1547615481.
    22. 22)
      • 22. Salaam, A.D., Hwang, P., McIntosh, R., et al: ‘Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer’, Beilstein J. Nanotechnol., 2014, 5, pp. 937945.
    23. 23)
      • 23. Purtov, K., Petunin, A., Inzhevatkin, E., et al: ‘Biodistribution of different sized nanodiamonds in mice’, J. Nanosci. Nanotechnol., 2015, 15, (2), pp. 10701075.
    24. 24)
      • 24. Puzyr, A.P., Bondar, V.S., Bukayemsky, A.A., et al: ‘Physical and chemical properties of modified nanodiamonds’, NATO Sci. Ser. II, Math. Phys. Chem., 2005, 192, pp. 261270.
    25. 25)
      • 25. Solmatova, A.A., Il'in, I.V., Shakhov, F.M., et al: ‘Electron paramagnetic resonance detection of the giant concentration of nitrogen vacancy defects in sintered detonation nanodiamonds’, JETP Lett., 2010, 92, (2), pp. 102106.
    26. 26)
      • 26. Bondar, V.S., Puzyr, A.P.: ‘Nanodiamonds for biological investigations’, Phys. Solid State, 2004, 46, (4), pp. 716719.
    27. 27)
      • 27. Puzyr, A.P., Baron, A.V., Purtov, K.V., et al: ‘Nanodiamonds with novel properties: a biological study’, Diam. Relat. Mater., 2007, 16, (12), pp. 21242128.
    28. 28)
      • 28. Medvedeva, N.N., Zhukov, E.L., Inzhevatkin, E.V., et al: ‘Antitumor properties of modified detonation nanodiamonds and sorbed doxorubicin on the model of Ehrlich ascites carcinoma’, Bull. Exp. Biol. Med., 2016, 160, (3), pp. 372375.
    29. 29)
      • 29. Puzyr, A.P., Bondar, V.S.: ‘Method of production of nanodiamonds of explosive synthesis with an increased colloidal stability’. RU Patent No. 2252192, 2005.
    30. 30)
      • 30. Puzyr, A.P., Neshumayev, D.A., Tarskikh, S.V., et al: ‘Destruction of human blood cells in interaction with detonation nanodiamonds in experiments in vitro’, Diam. Relat. Mater., 2004, 13, (11–12), pp. 20202023.
    31. 31)
      • 31. Yuan, Y., Chen, Y., Lui, J.-H., et al: ‘Biodistribution and fate of nanodiamonds in vivo’, Diam. Relat. Mater., 2009, 18, (1), pp. 95100.
    32. 32)
      • 32. Wei, Q., Zhan, L., Juanjuan, B., et al: ‘Biodistribution of co-exposure to multi-walled carbon nanotubes and nanodiamonds in mice’, Nanoscale Res. Lett., 2012, 7, (1), pp. 19, Article 473.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5594
Loading

Related content

content/journals/10.1049/iet-smt.2018.5594
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address