Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Phase angle error-based maximum correntropy adaptation for frequency estimation of three-phase power system

A robust technique based on maximum correntropy criterion (MCC) is proposed for frequency estimation in an unbalanced power system using error in phase angle. This is achieved by replacing the magnitude error used in the standard cost function of the MCC with the phase error and by extending the concept of the augmented (widely linear) complex statistics for the processing of unbalanced voltages and other abnormal system conditions. The idea emanates from the facts that: (i) useful information is primarily conveyed over the phase in power system frequency estimation, and (ii) the performance degradation of the well-known minimum mean squared error criterion based adaptive filters in impulsive noise environments can be overcome by the MCC due to the non-quadratic and higher order moments imbedded in its cost function. The proposed phase error-based MCC method also utilises all the second-order information within the complex valued system voltage through the Clarke's transformation. Simulation studies conducted using both synthetic and experimental data verify that the proposed algorithm provides better estimations compared to the considered algorithms.

References

    1. 1)
      • 5. Karimi, H., Karimi-Ghartemani, M., Iravani, M.R.: ‘Estimation of frequency and its rate of change for applications in power systems’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 472480.
    2. 2)
      • 4. Kamwa, I., Grondin, R.: ‘Fast adaptive schemes for tracking voltage phasor and local frequency in power transmission and distribution systems’, IEEE Trans. Power Deliv., 1992, 7, (2), pp. 789795.
    3. 3)
      • 33. Bollen, M.: ‘Characterisation of voltage sags experienced by three-phase adjustable-speed drives’, IEEE Trans. Power Deliv., 1997, 12, (4), pp. 16661671.
    4. 4)
      • 31. Chen, B., Xing, L., Zhao, H., et al: ‘Generalized correntropy for robust adaptive filtering’, IEEE Trans. Signal Process., 2016, 64, (13), pp. 33763387.
    5. 5)
      • 26. Khalili, A., Rastegarnia, A., Sanei, S.: ‘Robust frequency estimation in three-phase power systems using correntropy-based adaptive filter’, IET Sci. Meas. Techn., 2015, 9, (8), pp. 18.
    6. 6)
      • 22. Xia, Y., Mandic, D.P.: ‘A widely linear least mean phase algorithm for adaptive frequency estimation of unbalanced power systems’, Int. J. Elect. Power Energy Syst., 2014, 54, pp. 367375.
    7. 7)
      • 21. Rastegarnia, A., Khalili, A., Vahidpour, V., et al: ‘Frequency estimation of unbalanced three-phase power systems using the modified adaptive filtering’, Am. J. Signal Process., 2015, 5, (2A), pp. 1625.
    8. 8)
      • 15. Pradhan, A.K., Routray, A., Basak, A.: ‘Power system frequency estimation using least mean square technique’, IEEE Trans. Power Deliv., 2005, 20, (3), pp. 18121816.
    9. 9)
      • 17. Subudhi, B., Ray, P.K., Mohanty, S.R., et al: ‘A comparative study on different power system frequency estimation techniques’, Int. J. Autom. Control, 2009, 3, (2/3), pp. 202215.
    10. 10)
      • 10. Xue, H., Wang, M., Yang, R., et al: ‘Power system frequency estimation method in the presence of harmonics’, IEEE Trans. Instrum. Meas., 2016, 65, (1), pp. 5669.
    11. 11)
      • 18. Subudhi, B., Ray, P.K., Ghosh, S.: ‘Variable leaky least mean-square algorithm-based power system frequency estimation’, IET Sci. Meas. Techn., 2012, 6, (4), pp. 288297.
    12. 12)
      • 14. Karimi-Ghartemani, M., Karimi, H., Bakhshai, A.R.: ‘A filtering technique for three-phase power systems’, IEEE Trans. Instrum. Meas., 2009, 58, (2), pp. 389396.
    13. 13)
      • 1. Hancke, G.P.: ‘The optimal frequency estimation of a noisy sinusoidal signal’, IEEE Trans. Instrum. Meas., 1990, 39, (6), pp. 843846.
    14. 14)
      • 32. Rawat, T.K., Parthasarathy, H.: ‘A continuous-time least mean-phase adaptive filter for power frequency estimation’, Int. J. Elect. Power Energy Syst., 2009, 31, pp. 111115.
    15. 15)
      • 2. Vainio, O., Ovaska, S.: ‘Digital filtering for robust 50/60 Hz zero-crossing detectors’, IEEE Trans. Instrum. Meas., 1996, 45, (2), pp. 426430.
    16. 16)
      • 3. Chung, S.-K.: ‘A phase tracking system for three-phase utility interface inverters’, IEEE Trans. Power Electron., 2000, 15, (3), pp. 431438.
    17. 17)
      • 13. Eckhardt, V., Hippe, P., Hosemann, G.: ‘Dynamic measuring of frequency and frequency oscillations in multiphase power systems’, IEEE Trans. Power Deliv., 1989, 4, (1), pp. 95102.
    18. 18)
      • 7. Sanei, S., Lee, T., Abolghasemi, V.: ‘A new adaptive line enhancer based on singular spectrum analyses’, IEEE Trans. Biomed. Eng., 2012, 59, (2), pp. 428434.
    19. 19)
      • 29. Liu, W., Pokharel, P., Principe, J.: ‘Correntropy: properties and applications in non-Gaussian signal processing’, IEEE Trans. Signal Process., 2007, 55, (11), pp. 52865298.
    20. 20)
      • 24. Dini, D., Xia, Y., Douglas, S., et al: ‘Widely linear state space models for frequency estimation in unbalanced three-phase systems’. Proc. 7th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), New Jersey, USA, 2012, pp. 912.
    21. 21)
      • 19. Dash, P.K., Jena, R.K., Panda, G., et al: ‘An extended complex Kalman filter for frequency measurement of distorted signals’, IEEE Trans. Instrum. Meas., 2000, 49, (4), pp. 746753.
    22. 22)
      • 11. Xia, Y., He, Y., Wang, K., et al: ‘A complex least squares enhanced smart DFT technique for power system frequency estimation’, IEEE Trans. Power Deliv., 2017, 32, (13), pp. 12701278.
    23. 23)
      • 28. Mandic, D.P., Goh, S.L.: ‘Complex valued non-linear adaptive filters: non-circularity, widely linear and neural models’ (Wiley, New York, NY, USA, 2009).
    24. 24)
      • 12. Routray, A., Pradhan, A.K., Rao, K.P.: ‘A novel kalman filter for frequency estimation of distorted signals in power systems’, IEEE Trans. Instrum. Meas., 2002, 51, (3), pp. 469479.
    25. 25)
      • 16. Canteli, M.M., Fernandez, A.O., Eguiluz, L.I., et al: ‘Three-phase adaptive frequency measurement based on Clarke's transformation’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 11011105.
    26. 26)
      • 25. Xia, Y., Mandic, D.: ‘Augmented MVDR spectrum-based frequency estimation for unbalanced power systems’, IEEE Trans. Instrum. Meas, 2013, 62, (7), pp. 19171926.
    27. 27)
      • 23. Kanna, S., Talebi, S.P., Mandic, D.P.: ‘Diffusion widely linear adaptive estimation of system frequency in distributed power grids’. IEEE Int. Energy Conf., Dubrovnik, Croatia, 2014, pp. 772778.
    28. 28)
      • 30. Chen, B., Xing, L., Liang, J., et al: ‘Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion’, IEEE Signal Process. Lett., 2014, 21, (7), pp. 880884.
    29. 29)
      • 20. Xia, Y., Mandic, D.P.: ‘Widely linear adaptive frequency estimation of unbalanced three-phase power systems’, IEEE Trans. Instrum. Meas., 2012, 61, (1), pp. 7483.
    30. 30)
      • 27. Clarke, E.: ‘Circuit analysis of AC power systems’ (Wiley, NewYork, 1943).
    31. 31)
      • 8. Hwang, J.K., Markham, P.N.: ‘Power system frequency estimation by reduction of noise using three digital filters’, IEEE Trans. Instrum. Meas., 2014, 63, (2), pp. 402409.
    32. 32)
      • 9. Petri, D., Fontanelli, D., Macii, D.: ‘A frequency-domain algorithm for dynamic synchrophasor and frequency estimation’, IEEE Trans. Instrum. Meas., 2014, 63, (10), pp. 23302340.
    33. 33)
      • 6. Terzija, V.: ‘Improved recursive Newton-type algorithm for frequency and spectra estimation in power systems’, IEEE Trans. Instrum. Meas., 2003, 52, (5), pp. 16541659.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5568
Loading

Related content

content/journals/10.1049/iet-smt.2018.5568
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address