access icon free Understanding the electrical, thermal, and mechanical properties of epoxy magnesium oxide nanocomposites

Epoxy MgO nanocomposites exhibit high surface discharge inception voltage (SDIV) in SF6 gas ambience. Increase in SDIV is observed with 3wt% of MgO-added epoxy nanocomposites, especially when the SF6 ambient gas pressure is high. Impact of thermal ageing of epoxy nanocomposites on SDIV is minimum. Dielectric response studies were carried out experimentally and compared with modelling studies. The surface potential decay and charge trap characteristics of epoxy nanocomposites vary with percentage of nano filler. Thermal aging of epoxy nanocomposites has less influence on surface potential decay characteristics for 1 and 3 wt% MgO-added epoxy nanocomposites, indicating anti-thermal aging characteristics. Surface discharge activity generates UHF with its dominant frequency at around 1 GHz. The UHF signal magnitude formed due to SD activity is minimum with 3 wt% MgO-added epoxy nanocomposites. Laser-induced breakdown spectroscopy (LIBS) studies indicate that plasma temperature and threshold fluence increases with increase in wt% of MgO in epoxy resin. Tensile and flexural properties are greatly improved for nanocomposite compared to epoxy. The dynamic mechanical analysis (DMA) indicates increased storage modulus and reduction of tan δ with epoxy nanocomposites. The glass transition temperature (Tg) and activation energy increases with wt % of nano filler.

Inspec keywords: epoxy insulation; surface discharges; filled polymers; glass transition; nanocomposites; elastic moduli; surface potential; plasma temperature; nanofabrication; ageing; magnesium compounds; resins

Other keywords: SF6 ambient gas pressure; mechanical properties; electrical properties; surface discharge activity; charge trap characteristics; epoxy resin; MgO; thermal ageing; surface discharge inception voltage; thermal properties; surface potential decay characteristics; epoxy magnesium oxide nanocomposites; anti-thermal aging characteristics; epoxy MgO nanocomposites

Subjects: Other methods of nanofabrication; Plasma temperature and density; Elasticity and anelasticity; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Glass transitions; Other heat and thermomechanical treatments; Electric discharges; Elasticity, elastic constants

References

    1. 1)
      • 27. Wetzel, B., Patrick, R., Haupert, F., et al: ‘Epoxy nanocomposites – fracture and toughening mechanisms’, Eng. Fract. Mech., 2006, 73, pp. 23752398.
    2. 2)
      • 3. Tanaka, T., Montanari, G.C., Mulhaupt, R.: ‘Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (5), pp. 763784.
    3. 3)
      • 18. Du, B.X., Zhang, J. W., Gao, Y.: ‘Effects of TiO2 particles on surface charge of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 755762.
    4. 4)
      • 4. Imai, T., Hirano, Y., Hitai, H., et al: ‘Preparation and properties of epoxy-organically modified layered silicate nanocomposites’. Conf. Record of the 2002 IEEE Int'l. Symp. on Electrical Insulation, Boston, USA, 2002, pp. 379383.
    5. 5)
      • 29. Goyanes, S. N., Kö nig, P.G., Marconi, J.D.: ‘Dynamic mechanical analysis of particulate-filled epoxy resin’, J. Appl. Poly. Sci., 2003, 88, pp. 883892.
    6. 6)
      • 31. Zhang, S., Wang, X., He, M., et al: ‘Laser-induced plasma temperature’, Spectrochim. Acta, Part B, 2014, 97, pp. 1333.
    7. 7)
      • 21. Du, B.X., Du, Q., Li, J., et al: ‘Carrier mobility and trap distribution dependent flashover characteristics of epoxy resin’, IET Gener. Transm. Distrib., 2018, 12, (2), pp. 466471.
    8. 8)
      • 20. Du, B. X., Liang, H. C., Li, J., et al: ‘Temperature dependent surface potential decay and flashover characteristics of epoxy/SiC composites’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (2), pp. 631638.
    9. 9)
      • 25. Katayama, J., Ohki, Y., Fuse, N., et al: ‘Effects of nanofiller materials on the dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, pp. 157165.
    10. 10)
      • 2. Zhou, W., Zheng, Y., Yang, S., et al: ‘Detection of intense partial discharge of epoxy insulation in SF6 insulated equipment using carbonyl sulfide’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, pp. 29422948.
    11. 11)
      • 13. Oki, Y., Takao, T., Nomura, T., et al: ‘UV-Laser Ablation spectroscopy in element analysis of solid surface’, Opt. Rev., 1998, 5, pp. 242246.
    12. 12)
      • 6. Xiao, M., Du, B.X.: ‘Review of high thermal conductivity polymer dielectrics for electrical insulation’, High Vol., 2016, 1, (1), pp. 3442.
    13. 13)
      • 15. Judd, M.D., Farish, O.: ‘A pulsed GTEM system for UHF sensor calibration’, IEEE Trans. Instrum. Meas., 1998, 47, (4), pp. 875880.
    14. 14)
      • 7. Murakami, Y., Okazaki, T., Nagao, M., et al: ‘Space charge formation and conduction current of MgO/LDPE nanocomposite’. Annual Report on Conf. on Electrical Insulation and Dielectric Phenomena, West Lafayette, USA, 2010, pp. 556559.
    15. 15)
      • 12. Animesh, S., Ribhu, G., Vinu, R., et al: ‘Understanding the physico-chemical and surface discharge properties of epoxy silicon carbide nanocomposites’, Polym. Compos., 2017, 39, (9), pp. 32683279.
    16. 16)
      • 14. Kozako, M., Fuse, N., Ohki, Y., et al: ‘Surface degradation of polyamide nanocomposites caused by partial discharge using IEC (b) electrodes’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (5), pp. 833839.
    17. 17)
      • 30. Heijboar, J., Meier, D.J.: ‘Introduction to molecular basics of transitions and relaxations molecular basis of transitions and relaxations’, vol. 447, (Gordon and Breach Science Publishers, New York, 1978), p. 75.
    18. 18)
      • 24. Nelson, K., Hu, Y.: ‘Nanocomposite dielectrics-properties and implications’, J. Appl. Phys. D, 2005, 38, pp. 213222.
    19. 19)
      • 5. Sarathi, R., Sahu, R. K., Kumar, P.R., et al: ‘Understanding the performance of epoxy nano composites - A physico-chemical approach’, IEEJ Trans. Fundam. Mater., 2006, 126, pp. 11121120.
    20. 20)
      • 22. Mackish, D.J.: ‘Effects of interfacial polarization and loading factor in dielectric-loss measurements of composites’, J. Appl. Phys., 1979, 50, pp. 59235929.
    21. 21)
      • 26. Karkkainen, K.K., Sihvola, A.H., Nikoskinen, K.I.: ‘Effective permittivity of mixtures: numerical validation by the FDTD method’, IEEE Trans. Geosci. Remote Sens., 2000, 38, pp. 13031308.
    22. 22)
      • 1. Okabe, S., Ueta, G., Nojima, K.: ‘Resistance characteristics and electrification characteristics of GIS epoxy insulators under DC voltage’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, pp. 12601267.
    23. 23)
      • 28. Long-Cheng, T., Yan-Jun, W., Dong, Y., et al: ‘The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites’, Carbon. N. Y., 2013, 60, pp. 1627.
    24. 24)
      • 10. Zhou, H.y., Ma, G.m., Li, C.r., et al: ‘Impact of temperature on surface charges accumulation on insulators in SF6-filled DC-GIL’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (1), pp. 601610.
    25. 25)
      • 9. Srivastava, K. D., Zhou, J.: ‘Surface charging and flashover of spacers in SF6 under impulse voltages’, IEEE Trans. Electr. Insul., 1991, 26, (3), pp. 428442.
    26. 26)
      • 19. Simmons, J. G., Tam, M. C.: ‘Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions’, Phys. Rev. B, 1973, 7, pp. 37063713.
    27. 27)
      • 23. Lide, D.R.: ‘CRC handbook of chemistry and Physics’ (CRC Press, Florida, USA, 1999, 80th edn.).
    28. 28)
      • 16. Tanaka, T., Matsuo, Y., Uchida, K.: ‘Partial discharge endurance of epoxy/SiC nanocomposite’. 2008 Annual Report Conf. on Electrical Insulation and Dielectric Phenomena, Quebec, QC, 2008, pp. 1316.
    29. 29)
      • 11. Okubo, H., Hayakawa, N., Matsushita, A.: ‘The relationship between partial discharge current pulse waveforms and physical mechanisms’, IEEE Electr. Insul. Mag., 2002, 18, (3), pp. 3845.
    30. 30)
      • 17. Andritsch, T.: ‘Epoxy Based Nanocomposites for High Voltage DC Applications. Synthesis, Dielectric Properties and Space Charge Dynamics’. PhD thesis, TU Delft, 2010.
    31. 31)
      • 8. Todd, M. G., Shi, F. G.: ‘Complex permittivity of composite systems: a comprehensive interphase approach’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (3), pp. 601611.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5514
Loading

Related content

content/journals/10.1049/iet-smt.2018.5514
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading