Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Conductivity-based model for the simulation of homocharges and heterocharges in XLPE high-voltage direct current cable insulation

The dynamic space charge distribution within cross-linked polyethylene (XLPE) cable insulations is simulated in this study. To simulate charge dynamics inside the insulation, different models have been developed. Conductivity-based models describe electronic and ionic charges. Such models are structurally simpler than bipolar charge transport models because of their macroscopic description. So far, the macroscopic description is insufficient, as it does not depict the accumulation of homocharges and heterocharges near the electrodes and the transport of charge packets. In this study, a conductivity-based model is developed to simulate the transport of charges and the formation of homocharges and heterocharges. The conductivity model depends on the electric field and on the temperature. This model is extended by two Gaussian curves, moving from the electrodes to the counter electrodes, which features an increased conductivity in comparison to bulk conductivity. The bulk conductivity is obtained from measurements in the literature. The permittivity is modelled to be non-constant in the vicinity of the electrodes due to e.g. interdiffusion between the bulk insulation and the semiconducting layer. A comparison between the simulation results and the reference measurements confirms the applicability of the presented approach for the description of the dynamic charge distribution in XLPE cable insulation.

References

    1. 1)
      • 10. McAllister, I.W., Crichton, G.C., Petersen, A.: ‘Space charge fields in DC cables’. IEEE Int. Symp. on Electrical Insulation, 1996, pp. 661665.
    2. 2)
      • 24. Fleming, R.J., Henriksen, M., Holboll, J.T.: ‘The influence of electrodes and conditioning on space charge accumulation in XLPE’, IEEE Trans. Electr. Insul., 2000, 7, (4), pp. 561571.
    3. 3)
      • 18. Montanari, G.C., Ghinello, I., Peruzzotti, F., et al: ‘Behavior of voltage-current characteristics and threshold indications for XLPE-based materials’. Annual Report – Conf. on Electrical Insulation and Dielectric Phenomena (CEIDP), Atlanta, GA, USA, October 1998, pp. 2528.
    4. 4)
      • 38. Boufayed, F., Teyssèdre, G., Laurent, C., et al: ‘Models of bipolar charge transport in polyethylene’, J. Phys. D: Appl. Phys., 2006, 100, pp. 104105.110.
    5. 5)
      • 29. Teyssedre, G., Laurent, C.: ‘Charge transport modeling in insulating polymers: from molecular to macroscopic scale’, IEEE Trans. Electr. Insul., 2005, 12, (6), pp. 857875.
    6. 6)
      • 21. Olsson, C.O., Källstrand, B., Ghorbani, H.: ‘Conductivity of crosslinked polyethylene influenced by water’. Annual Report – Conf. on Eletrical Insulation and Dielectric Phenomena (CEIDP), Des Moines, IA, USA, October 2014, pp. 832835.
    7. 7)
      • 17. Wintle, H.J.: ‘Charge motion and trapping in insulators – surface and bulk effects’, IEEE Trans. Electr. Insul., 1999, 6, (1), pp. 110.
    8. 8)
      • 34. Fu, M., Dissado, L.A., Chen, G., et al: ‘Space charge formation and its modified electric field under applied voltage reversal and temperature gradient in XLPE cable’, IEEE Trans. Electr. Insul., 2008, 15, (3), pp. 851860.
    9. 9)
      • 39. Meunier, M., Quirke, N.: ‘Molecular modeling of electron trapping in polymer insulators’, J. Chem. Phys., 2000, 113, (1), pp. 369376.
    10. 10)
      • 19. Ve, T.A., Mauseth, F., Ildstad, E.: ‘Effect of water content on the conductivity of XLPE insulation’. Annual Report – Conf. on Eletrical Insulation and Dielectric Phenomena (CEIDP), Montreal, QC, Canada, October 2012, pp. 649653.
    11. 11)
      • 23. Maeno, Y., Hirai, N., Ohki, Y., et al: ‘Effects of crosslinking byproducts on space charge formation in crosslinked polyethylene’, IEEE Trans. Electr. Insul., 2005, 12, (1), pp. 9097.
    12. 12)
      • 32. LeRoy, S., Segur, P., Teyssedre, G., et al: ‘Description of bipolar charge transport in polyethylene using a fluid model with constant mobility: model predictions’, J. Phys. D: Appl. Phys., 2003, 37, pp. 298305.
    13. 13)
      • 9. Mazzanti, G., Marzinotto, M.: ‘Extruded cables for high voltage direct current transmission – advances in research and development’ (John Wiley & Sons, INc., New Jersey, 2013), pp. 5253.
    14. 14)
      • 25. Bodega, R., Morshuis, P.H.F., Straathof, E.J.D., et al: ‘Characterization of XLPE MV-size DC cables by means of space charge measurements’. Annual Report – Conf. on Eletrical Insulation and Dielectric Phenomena (CEIDP), Kansas City, MO, USA, October 2006, pp. 1114.
    15. 15)
      • 4. Lv, Z., Cao, J., Wang, X., et al: ‘Mechanism of space charge formation in cross linked polyethylene (XLPE) under temperature gradient’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (6), pp. 31863196.
    16. 16)
      • 22. Lewis, T.J.: ‘The role of electrodes and breakdown phenomena In solid dielectrics’, IEEE Trans. Electr. Insul., 1984, EI-19, (3), pp. 210216.
    17. 17)
      • 14. Steven, J.Y., Vu, T.T.N., Teyssedre, G., et al: ‘Conductivity measurements and space charge inference in polymeric-insulated HVDC model cables’. Int. Conf. on High Voltage Engineering and Application (ICHVE), Poznan, Poland, September 2014, pp. 14.
    18. 18)
      • 12. Fabiani, D., Montanari, G.C., Dissado, L. A., et al: ‘Fast and slow charge packets in polymeric materials under DC stress’, IEEE Trans. Electr. Insul., 2009, 16, (1), pp. 241250.
    19. 19)
      • 41. Dissado, L.A., Fothergill, J.C.: ‘Electrical degradation and breakdown in polymers’ (Peregrinus, London, 1992).
    20. 20)
      • 5. Baudoin, F., LeRoy, S., Teyssedre, G., et al: ‘Bipolar charge transport model with trapping and recombination: an analysis of the current versus applied electric field characteristics in steady state conditions’, J. Phys. D: Appl. Phys., 2007, 41, pp. 110.
    21. 21)
      • 36. Hozumi, N., Suzuki, H., Okamoto, T., et al: ‘Direct oberservation of time-dependent space charge profiles in XLPE cable under high electric fields’, IEEE Trans. Electr. Insul., 1994, 1, (6), pp. 10681076.
    22. 22)
      • 15. Boggs, S.A., Damon, D.H., Hjerrild, J., et al: ‘Effect of insulation properties on the field grading of solid dielectric DC cable’, IEEE Trans. Power Deliv., 2001, 16, (4), pp. 456461.
    23. 23)
      • 35. Choo, W., Chen, G., Swingler, S.G.: ‘Electric field in polymeric cable due to space charge accumulation under DC and temperature gradient’, IEEE Trans. Electr. Insul., 2011, 18, (2), pp. 596606.
    24. 24)
      • 6. Wu, J., Lan, L., Li, Z., et al: ‘Simulation of space charge behavior in LDPE with a modified of bipolar charge transport model’. Int. Symp. on Electrical Insulating Materials, Niigata, Japan, June 2014, pp. 6568.
    25. 25)
      • 13. McAllister, I.W., Crichton, G.C., Petersen, A.: ‘Charge accumulation in DC cables – a macroscopic approach’, IEEE Symp. Electr. Insul., 1994, pp. 212216.
    26. 26)
      • 28. Hampton, R.N.: ‘Some of the considerations for materials operating under high-voltage, direct- current stresses’, IEEE Electr. Insul. Mag., 2008, 24, (1), pp. 513.
    27. 27)
      • 2. Hanley, T.L., Burford, R.P., Fleming, R.J., et al: ‘A general review of polymeric insulation for use in HVDC cables’, IEEE Electr. Insul. Mag., 2003, 19, (1), pp. 1424.
    28. 28)
      • 27. Jeroense, M.J.P., Morshuis, P.H.F.: ‘Electric fields in HVDC paper-insulated cables’, IEEE Trans. Dielectr. Electr. Insul., 1998, 5, (2), pp. 225236.
    29. 29)
      • 30. Lv, Z., Rowland, S.M., Wu, K.: ‘Simulation of fast charge packets transport in polymers’. Annual Report – Conf. on Eletrical Insulation and Dielectric Phenomena (CEIDP), Fort Worth, TX, USA, October 2017, pp. 98101.
    30. 30)
      • 7. Bodega, R.: ‘Space charge Accumulation in Polymeric High Voltage Cable Systems’. Ph.D. Thesis, Technical University of Delft, 2006.
    31. 31)
      • 37. Montanari, G.C., Morshuis, P.H.F.: ‘Space charge phenomenology in polymeric insulation materials’, IEEE Trans. Electr. Insul., 2005, 12, (4), pp. 754767.
    32. 32)
      • 33. LeRoy, S., Boufayed, F., Baudoin, F., et al: ‘A user-friendly tool for simulating the time-dependent field distribution in PE insulation on the basis of a physical approach’. Proc. 2007 JCable Conf. on Power Insulated Cables.
    33. 33)
      • 16. Hestad, O.L., Mauseth, F., Kyte, R.H.: ‘Electrical conductivity of medium voltage XLPE insulated cables’. IEEE Int. Symp. on Electrical Insulation, San Juan, PR, USA, June 2012, pp. 376380.
    34. 34)
      • 3. Imburgia, A., Miceli, R., Sanseverino, E.R., et al: ‘Review of space charge measurement systems: acoustic, thermal and optical’, IEEE Trans. Electr. Insul., 2016, 23, (5), pp. 31263142.
    35. 35)
      • 31. Hjerrild, J., Holboll, J., Henriksen, M., et al: ‘Effect of semicon-dielectric interface on conductivity and electric field distribution’, IEEE Trans. Electr. Insul., 2002, 9, (4), pp. 596603.
    36. 36)
      • 8. Vu, T.T.N., Teyssèdre, G., Vissouvanadin, B., et al: ‘Electric field profile measurement and modeling in multi-dielectrics for HVDC application’. IEEE Int. Conf. on Solid Dielectrics, Bologna, Italy, June/July 2013, pp. 413416.
    37. 37)
      • 11. Boggs, S.A.: ‘Semi-empirical high-field conduction model for polyethylene and implications thereof’, IEEE Trans. Electr. Insul., 1995, 2, (1), pp. 97106.
    38. 38)
      • 40. Adamec, V., Calderwood, J.H.: ‘Electrical conduction in dielectrics at high fields’, J. Phys. D: Appl. Phys., 1975, 8, pp. 551560.
    39. 39)
      • 26. Dissado, L.A.: ‘The origin and nature of ‘charge packets’: a short review’. Int. Conf. on Solid Dielectrics, Potsdam, Germany, July 2010, pp. 16.
    40. 40)
      • 1. Chen, G., Hao, M., Xu, Z., et al: ‘Review of high voltage direct current cables’, CSEE J. Power Energy Syst., 2015, 1, (2), pp. 921.
    41. 41)
      • 20. Mazzanti, G.: ‘Life and reliability models for high voltage DC extruded cables’, IEEE Electr. Insul. Mag., 2017, 33, (4), pp. 4252.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5452
Loading

Related content

content/journals/10.1049/iet-smt.2018.5452
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address