access icon free Breakdown performance of transformer oil in the presence of single-phase nanocrystalline ZnO and nano-partial substitution

In this study, newly structured nanoparticles are synthesised and incorporated in the transformer oil for enhancing the dielectric properties. A new nanocrystalline series of zinc oxide (ZnO) and ZnO partially substituted by lanthanum oxide is presented for the first time, where the precursor technique is utilised to create the nano-powders. Different partial substitutions facilitate to manipulate nanocrystalline sizes, and therefore the effect on nanofluid dielectric characteristics is attained. Another factor during the laboratory nanoparticles preparation is considered that the precursor is annealed at different temperatures. The nanocrystalline phase compositions are experimentally examined and evaluated using X-ray diffraction and transmission electron microscope. Accordingly, single-phase and multi-phase nanocrystalline powders are ascertained. The transformer oil incorporated with nanoparticles is prepared and its dielectric strength is measured using an oil breakdown voltage tester. The measured dielectric strength of transformer oil with and without nanoparticles is statistically evaluated using Weibull distribution. The most appropriate nanofluid and concentration are estimated experimentally. Toward interpreting the nanofluid dielectric enhancement, their electric field distribution is numerically evaluated at different nanoparticle concentrations using COMSOL multiphysics. This study supports the analysis and optimisation of transformer oil dielectric performance.

Inspec keywords: transformer oil; lanthanum compounds; nanoparticles; semiconductor growth; zinc compounds; nanofabrication; wide band gap semiconductors; scanning electron microscopy; X-ray diffraction; electric breakdown; nanofluidics; electric strength; II-VI semiconductors; transmission electron microscopy; annealing; Weibull distribution

Other keywords: multiphase nanocrystalline powders; ZnO; oil breakdown voltage tester; nanocrystalline phase compositions; nanopartial substitution; nanofluid dielectric enhancement; single-phase nanocrystalline ZnO; transmission electron microscopy; annealing; X-ray diffraction; nanocrystalline series; Weibull distribution; nanofluid dielectric characteristics; COMSOL multiphysics; lanthanum oxide; electric field distribution; ZnO-La2O3; transformer oil dielectric performance; nanocrystalline sizes; breakdown performance; precursor technique; nanoparticle concentrations; laboratory nanoparticle preparation; structured nanoparticles; dielectric strength

Subjects: Dielectric breakdown and space-charge effects; Annealing processes in semiconductor technology; II-VI and III-V semiconductors; Dielectric breakdown and discharges; Nanometre-scale semiconductor fabrication technology; Other methods of nanofabrication; Transformers and reactors; Annealing processes; Low-dimensional structures: growth, structure and nonelectronic properties; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials

References

    1. 1)
      • 6. Cavallini, A., Karthik, R., Negri, F.: ‘The effect of magnetite, graphene oxide and silicone oxide nanoparticles on dielectric withstand characteristics of mineral oil’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 25922600.
    2. 2)
      • 4. Ibrahim, M.E., Abd-Elhady, A.M., Izzularab, M.A.: ‘Effect of nanoparticles on transformer oil breakdown strength: experiment and theory’, IET Sci. Meas. Technol., 2016, 10, (8), pp. 839845.
    3. 3)
      • 14. Mostafaa, N.Y., Hessien, M.M., Shaltout, A.A.: ‘Hydrothermal synthesis and characterizations of Ti substituted Mn-ferrites’, Mater. Lett., 2000, 43, pp. 1922.
    4. 4)
      • 2. Liu, D., Zhou, Y., Yang, Y., et al: ‘Characterization of high performance AlN nanoparticle-based transformer oil nanofluids’, IEEE Trans. Dielectr. Electr. Insul., 2015, 23, (5), pp. 27572767.
    5. 5)
      • 18. Hessien, M.M., Rashad, M.M., El-Barawy, K.: ‘Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method’, J. Magn. Magn. Mater., 2008, 320, pp. 336343.
    6. 6)
      • 17. Satyanarayana, L., Reddy, K.M., Sunkara, V.M.: ‘A novel material for the detection of liquefied petroleum gas in air’, Mater. Chem. Phys., 2003, 82, pp. 2126.
    7. 7)
      • 27. Available at http://www.us-nano.com/inc/sdetail/349, online, July 2017.
    8. 8)
      • 7. Dhar, P., Katiyar, A., Sirisha Maganti, L., et al: ‘Superior dielectric breakdown strength of graphene and carbon nanotube infused nano-oils’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 943956.
    9. 9)
      • 12. Kakihana, M.: ‘Sol–gel Preparation of High Temperature Superconducting Oxides’, J. Sol-Gel Sci. Technol., 1996, 6, p. 7.
    10. 10)
      • 23. Lee, S., O'Sullivan, F., Zahn, M., et al: ‘Finite element analysis of charge injection and transport in a dielectric liquid’. IEEE Conf. Electrical Insulation Dielectric Phenomena, Kansas City, MO, USA, October 2006, pp. 129132.
    11. 11)
      • 1. Sima, W., Shi, J., Yang, Q., et al: ‘Effects of conductivity and permittivity of nanoparticle on transformer oil insulation performance: experiment and theory’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (1), pp. 380390.
    12. 12)
      • 21. Manikandan, A., Manikandan, E., Meenatchi, B., et al: ‘Rare earth element (REE) lanthanum doped zinc oxide (La:ZnO) nanomaterials: synthesis structural optical and antibacterial studies’, J. Alloys Compd., 2017, 723, pp. 11551161.
    13. 13)
      • 5. Mansour, D.A., Elsaeed, A.M., Izzularab, M.A.: ‘The role of interfacial zone in dielectric properties of transformer oil-based nanofluids’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (6), pp. 33643372.
    14. 14)
      • 9. Katiyar, A., Dhar, P., Nandi, T., et al: ‘Enhanced breakdown performance of anatase and rutile titania based nano-oils’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (6), pp. 34943503.
    15. 15)
      • 25. Available at http://www.thecalculatorsite.com/conversions/weighttovolume.php, online, July 2017.
    16. 16)
      • 29. Ding, H.Z., Wang, Z.D., Jarman, P.: ‘Dielectric strength of aged transformer oil experimental studies and statistical analysis of breakdown voltage’. Proc. 14th Int. Symp. High Voltage Engineering, China, August 2005, pp. 15.
    17. 17)
      • 16. Azizi, A., Sadrnezhaad, S.K.: ‘Effects of annealing on phase evolution, microstructure and magnetic properties of mechanically synthesized nickel-ferrite’, Ceram. Int., 2010, 36, pp. 22412245.
    18. 18)
      • 24. AC/DC Module user's guide, 1998–2015 COMSOL.
    19. 19)
      • 19. Hessien, M.: ‘Synthesis and characterization of lithium ferrite by oxalate precursor route’, J. Magn. Magn. Mater., 2008, 320, pp. 28002807.
    20. 20)
      • 3. Lv, Y., Ge, Y., Li, C, et al: ‘Effect of TiO2 nanoparticles on streamer propagation in transformer oil under lightning impulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (4), pp. 21102115.
    21. 21)
      • 10. Peppas, G.D., Charalampakos, V.P., Pyrgioti, E.C., et al: ‘Statistical investigation of AC breakdown voltage of nanofluids compared with mineral and natural ester oil’, IET Sci. Meas. Technol., 2016, 10, (6), pp. 644652.
    22. 22)
      • 28. Wang, X., Tang, C., Huang, B., et al: ‘Review of research progress on the electrical properties and modification of mineral insulating oils used in power transformers’, Energies, 2018, 11, p. 487, doi:10.3390/en11030487.
    23. 23)
      • 22. Ghani, S.A., Muhamad, N.A., Chairu, I.S., et al: ‘A study of moisture effects on the breakdown voltage and spectral characteristics of mineral and palm oil-based insulation oils’, ARPN J. Eng. Appl. Sci., 2016, 11, (8), pp. 50125020.
    24. 24)
      • 26. Available at http://www.substech.com/dokuwiki/doku.php?id=mineral_transformer_oil, online, July 2017.
    25. 25)
      • 15. Liu, T., Xu, Y.: ‘Synthesis of nanocrystalline LaFeO3 powders via glucose sol–gel route’, Mater. Chem. Phys., 2011, 129, pp. 10471050.
    26. 26)
      • 8. Raymon, A., Sakthibalan, S., Cinthal, C., et al: ‘Enhancement and comparison of nano-ester insulating fluids’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 892900.
    27. 27)
      • 20. Hessien, M.M., Mersal, G.A.M., Mohsen, Q., et al: ‘Structural, magnetic and sensing properties of lanthanum ferrite via facile sol gel oxalate precursor route’, J. Mater. Sci. Mater. Electron., 2017, 28, (5), pp. 41704178.
    28. 28)
      • 13. Li, F., Liu, Y., Sun, Z., et al: ‘Facile preparation of porous LaFeO3 nanomaterial by self-combustion of ionic liquids’, Mater. Lett., 2011, 65, pp. 406408.
    29. 29)
      • 11. Feng, X.-Y., Liu, H.-X., Wang, X., et al: ‘The study of electrical properties for multilayer La2O3/Al2O3 dielectric stacks and LaAlO3 dielectric film deposited by ALD’, Nanoscale Res. Lett., 2017, 12:230, pp. 14.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5375
Loading

Related content

content/journals/10.1049/iet-smt.2018.5375
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading