access icon free Particle swarm approach to the optimisation of trenched cantilever-based MEMS piezoelectric energy harvesters

A micro-electro-mechanical system (MEMS) trenched piezoelectric energy harvester based on a cantilever structure has been proposed. The trenched piezoelectric layer has increased the output voltage and the generated power. It also provides three additional design parameters such as the trench position, depth and length. A particle swarm approach has been used for optimisation of the piezoelectric energy harvester geometry with the aim of finding the optimum design which transfers the maximum harvested power to a definite load. The optimisations and comparisons have been made for unimorph, bimorph, trenched and non-trenched cantilever beams. The results are quite revealing that the generated power for a trenched bimorph energy harvester is much larger than other structures. The optimum design found by particle swarm optimisation algorithm has asymmetric trenches in the top and bottom piezoelectric layers and can generate much more power than the unoptimised structure.

Inspec keywords: piezoelectric transducers; optimisation; micromechanical devices; particle swarm optimisation; energy harvesting; cantilevers

Other keywords: piezoelectric energy harvester geometry; particle swarm optimisation algorithm; piezoelectric layers; cantilever structure; trenched cantilever-based MEMS piezoelectric energy harvesters; trenched bimorph energy harvester; microelectro-mechanical system; piezoelectric layer; particle swarm approach

Subjects: Optimisation techniques; Energy harvesting; Design and modelling of MEMS and NEMS devices; Piezoelectric devices

References

    1. 1)
      • 6. Savarimuthu, K., Sankararajan, R., Murugesan, S.: ‘Analysis and design of power conditioning circuit for piezoelectric vibration energy harvester’, IET Sci. Meas. Technol., 2017, 11, pp. 723730.
    2. 2)
      • 12. Tan, D., Leng, Y.G., Gao, Y.J.: ‘Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field’, Eur. Phys. J. Spec. Top., 2015, 224, (14–15), pp. 28392853.
    3. 3)
      • 34. Trelea, I.C.: ‘The particle swarm optimization algorithm: convergence analysis and parameter selection’, Inf. Process. Lett., 2003, 85, (6), pp. 317325.
    4. 4)
      • 19. Liu, Y.Z., Yang, T.Q., Shu, F.M.: ‘Optimization of energy harvesting based on the uniform deformation of piezoelectric ceramic’, Funct. Mater. Lett., 2016, 9, (5), pp. 16.
    5. 5)
      • 16. Saxena, S., Sharma, R., Pant, B.D.: ‘Design and development of guided four beam cantilever type MEMS based piezoelectric energy harvester’, Microsyst. Technol., 2017, 23, (6), pp. 17511759.
    6. 6)
      • 14. Ibrahim, D.S., Muthalif, A.G.A., Nordin, N.H.D., et al: ‘Comparative study of conventional and magnetically coupled piezoelectric energy harvester to optimize output voltage and bandwidth’, Microsyst. Technol., 2017, 23, (7), pp. 26632674.
    7. 7)
      • 22. Sunithamani, S., Lakshmi, P.: ‘Simulation study on performance of MEMS piezoelectric energy harvester with optimized substrate to piezoelectric thickness ratio’, Microsyst. Technol., 2015, 21, (4), pp. 733738.
    8. 8)
      • 7. Shaikh, F.K., Zeadally, S.: ‘Energy harvesting in wireless sensor networks: a comprehensive review’, Renew. Sust. Energy Rev., 2016, 55, pp. 10411054.
    9. 9)
      • 13. Salim, M., Salleh, H., Loh, E.W.K., et al: ‘New simulation approach for tuneable trapezoidal and rectangular piezoelectric bimorph energy harvesters’, Microsyst. Technol., 2017, 23, (6), pp. 20972106.
    10. 10)
      • 10. Zhang, G.Y., Gao, S.Q., Liu, H.P., et al: ‘A low frequency piezoelectric energy harvester with trapezoidal cantilever beam: theory and experiment’, Microsyst. Technol., 2017, 23, (8), pp. 34573466.
    11. 11)
      • 20. Sunithamani, S., Lakshmi, P., Eba Flora, E.: ‘PZT length optimization of MEMS piezoelectric energy harvester with a non-traditional cross section: simulation study’, Microsyst. Technol., 2014, 20, (12), pp. 21652171.
    12. 12)
      • 9. Obeid, A.M., Karray, F., Jmal, M.W., et al: ‘Towards realisation of wireless sensor network-based water pipeline monitoring systems: a comprehensive review of techniques and platforms’, IET Sci. Meas. Technol., 2016, 10, pp. 420426.
    13. 13)
      • 18. Sordo, G., Serra, E., Schmid, U., et al: ‘Optimization method for designing multimodal piezoelectric MEMS energy harvesters’, Microsyst. Technol., 2016, 22, (7), pp. 18111820.
    14. 14)
      • 30. Lefeuvre, E., Audigier, D., Richard, C., et al: ‘Buck-boost converter for sensorless power optimization of piezoelectric energy harvester’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 20182025.
    15. 15)
      • 8. Naeem, M.K., Patwary, M.N., Soliman, A.H., et al: ‘Cooperative transmission schemes for energy-efficient collaborative wireless sensor networks’, IET Sci. Meas. Technol., 2014, 8, pp. 391398.
    16. 16)
      • 1. Schertzer, M.J.: ‘Analytical model of droplet based electrostatic energy harvester performance’, Microsyst. Technol., 2017, 23, (8), pp. 31413148.
    17. 17)
      • 11. Madinei, H., Khodaparast, H.H., Adhikari, S., et al: ‘Adaptive tuned piezoelectric MEMS vibration energy harvester using an electrostatic device’, Eur. Phys. J. Spec. Top., 2015, 224, (14–15), pp. 27032717.
    18. 18)
      • 2. Zuo, Z.-W., Hao, Y., Song, M., et al: ‘Intensity modulation-based fibre optic vibration sensor using an aperture within a proof mass’, IET Sci. Meas. Technol., 2017, 11, pp. 4956.
    19. 19)
      • 32. Elrahman, M.K.A.: ‘Fully optimised charge simulation method by using particle swarm optimisation’, IET Sci. Meas. Technol., 2015, 9, pp. 435442.
    20. 20)
      • 29. DuToit, N.E., Wardle, B.L.: ‘Experimental verification of models for microfabricated piezoelectric vibration energy harvesters’, AIAA J., 2007, 45, (5), pp. 11261137.
    21. 21)
      • 33. Jain, S., Kumar, A., Bajaj, V.: ‘Technique for QRS complex detection using particle swarm optimisation’, IET Sci. Meas. Technol., 2016, 10, pp. 626636.
    22. 22)
      • 5. Alazemi, S.F., Bibo, A., Daqaq, M.F.: ‘A ferrofluid-based energy harvester: an experimental investigation involving internally-resonant sloshing modes’, Eur. Phys. J. Spec. Top., 2015, 224, (14–15), pp. 29933004.
    23. 23)
      • 38. Amiri, P., Kordrostami, Z.: ‘Sensitivity enhancement of MEMS diaphragm hydrophones using an integrated ring MOSFET transducer’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2018, 65, (11), pp. 21212130.
    24. 24)
      • 37. Ghoddus, H., Kordrostami, Z.: ‘Harvesting the ultimate electrical power from mems piezoelectric vibration energy harvesters: an optimization approach’, IEEE Sens. J., 2018, 18, (21), pp. 86678675.
    25. 25)
      • 21. Liang, Z., Xu, C., Ren, B., et al: ‘Optimization of cantilevered piezoelectric energy harvester with a fixed resonance frequency’, Sci. China Technol. Sci., 2014, 57, (6), pp. 10931100.
    26. 26)
      • 31. Gao, Y., Du, W., Yan, G.: ‘Selectively-informed particle swarm optimization’, Sci. Rep., 2015, 5, p. 9295.
    27. 27)
      • 27. Park, J., Lee, S., Kwak, B.M.: ‘Design optimization of piezoelectric energy harvester subject to tip excitation’, J. Mech. Sci. Technol., 2012, 26, (1), pp. 137143.
    28. 28)
      • 26. Rupp, C.J., Evgrafov, A., Maute, K., et al: ‘Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells’, J. Intell. Mater. Syst. Struct., 2009, 20, (16), pp. 19231939.
    29. 29)
      • 24. Franco, V.R., Varoto, P.S.: ‘Parameter uncertainties in the design and optimization of cantilever piezoelectric energy harvesters’, Mech. Syst. Signal Process., 2017, 93, pp. 593609.
    30. 30)
      • 3. Tang, G., Yang, B., Hou, C., et al: ‘A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding’, Nature, 2016, 6, p. 38798.
    31. 31)
      • 36. Kordrostami, Z., Roohizadegan, S.: ‘A groove engineered ultralow frequency piezomems energy harvester with ultrahigh output voltage’, Int. J. Mod. Phys. B, 2018, 32, (20), p. 1850208.
    32. 32)
      • 17. Yao, F.L., Meng, W.J., Gao, S.Q., et al: ‘Research on the master-slave compound multi-cantilever piezoelectric energy harvester’, Microsyst. Technol., 2017, 23, (4), pp. 10271044.
    33. 33)
      • 4. Sunithamani, S., Lakshmi, P.: ‘Experimental study and analysis of unimorph piezoelectric energy harvester with different substrate thickness and different proof mass shapes’, Microsyst. Technol., 2017, 23, (7), pp. 24212430.
    34. 34)
      • 35. Li, J., Ren, W., Fan, G., et al: ‘Design and fabrication of piezoelectric micromachined ultrasound transducer (pMUT) with partially-etched ZnO film’, Sensors, 2017, 17, pp. 113.
    35. 35)
      • 28. Mohamed, R., Sarker, M.R., Mohamed, A.: ‘An optimization of rectangular shape piezoelectric energy harvesting cantilever beam for micro devices’, Int. J. Appl. Electromagn. Mech., 2016, 50, (4), pp. 537548.
    36. 36)
      • 23. Kirubaveni, S., Radha, S., Sreeja, B.S., et al: ‘Analysis of rectangular and triangular end array type piezoelectric vibration energy harvester’, Microsyst. Technol., 2015, 21, (10), pp. 21652173.
    37. 37)
      • 15. Jia, Y., Seshia, A.A.: ‘Five topologies of cantilever-based MEMS piezoelectric vibration energy harvesters: a numerical and experimental comparison’, Microsyst. Technol., 2016, 22, (12), pp. 28412852.
    38. 38)
      • 25. Thein, C.K., Ooi, B.L., Liu, J.S., et al: ‘Modelling and optimisation of a bimorph piezoelectric cantilever beam in an energy harvesting application’, J. Eng. Sci. Technol., 2016, 11, (2), pp. 212227.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5371
Loading

Related content

content/journals/10.1049/iet-smt.2018.5371
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading