http://iet.metastore.ingenta.com
1887

Particle swarm approach to the optimisation of trenched cantilever-based MEMS piezoelectric energy harvesters

Particle swarm approach to the optimisation of trenched cantilever-based MEMS piezoelectric energy harvesters

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A micro-electro-mechanical system (MEMS) trenched piezoelectric energy harvester based on a cantilever structure has been proposed. The trenched piezoelectric layer has increased the output voltage and the generated power. It also provides three additional design parameters such as the trench position, depth and length. A particle swarm approach has been used for optimisation of the piezoelectric energy harvester geometry with the aim of finding the optimum design which transfers the maximum harvested power to a definite load. The optimisations and comparisons have been made for unimorph, bimorph, trenched and non-trenched cantilever beams. The results are quite revealing that the generated power for a trenched bimorph energy harvester is much larger than other structures. The optimum design found by particle swarm optimisation algorithm has asymmetric trenches in the top and bottom piezoelectric layers and can generate much more power than the unoptimised structure.

References

    1. 1)
      • 1. Schertzer, M.J.: ‘Analytical model of droplet based electrostatic energy harvester performance’, Microsyst. Technol., 2017, 23, (8), pp. 31413148.
    2. 2)
      • 2. Zuo, Z.-W., Hao, Y., Song, M., et al: ‘Intensity modulation-based fibre optic vibration sensor using an aperture within a proof mass’, IET Sci. Meas. Technol., 2017, 11, pp. 4956.
    3. 3)
      • 3. Tang, G., Yang, B., Hou, C., et al: ‘A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding’, Nature, 2016, 6, p. 38798.
    4. 4)
      • 4. Sunithamani, S., Lakshmi, P.: ‘Experimental study and analysis of unimorph piezoelectric energy harvester with different substrate thickness and different proof mass shapes’, Microsyst. Technol., 2017, 23, (7), pp. 24212430.
    5. 5)
      • 5. Alazemi, S.F., Bibo, A., Daqaq, M.F.: ‘A ferrofluid-based energy harvester: an experimental investigation involving internally-resonant sloshing modes’, Eur. Phys. J. Spec. Top., 2015, 224, (14–15), pp. 29933004.
    6. 6)
      • 6. Savarimuthu, K., Sankararajan, R., Murugesan, S.: ‘Analysis and design of power conditioning circuit for piezoelectric vibration energy harvester’, IET Sci. Meas. Technol., 2017, 11, pp. 723730.
    7. 7)
      • 7. Shaikh, F.K., Zeadally, S.: ‘Energy harvesting in wireless sensor networks: a comprehensive review’, Renew. Sust. Energy Rev., 2016, 55, pp. 10411054.
    8. 8)
      • 8. Naeem, M.K., Patwary, M.N., Soliman, A.H., et al: ‘Cooperative transmission schemes for energy-efficient collaborative wireless sensor networks’, IET Sci. Meas. Technol., 2014, 8, pp. 391398.
    9. 9)
      • 9. Obeid, A.M., Karray, F., Jmal, M.W., et al: ‘Towards realisation of wireless sensor network-based water pipeline monitoring systems: a comprehensive review of techniques and platforms’, IET Sci. Meas. Technol., 2016, 10, pp. 420426.
    10. 10)
      • 10. Zhang, G.Y., Gao, S.Q., Liu, H.P., et al: ‘A low frequency piezoelectric energy harvester with trapezoidal cantilever beam: theory and experiment’, Microsyst. Technol., 2017, 23, (8), pp. 34573466.
    11. 11)
      • 11. Madinei, H., Khodaparast, H.H., Adhikari, S., et al: ‘Adaptive tuned piezoelectric MEMS vibration energy harvester using an electrostatic device’, Eur. Phys. J. Spec. Top., 2015, 224, (14–15), pp. 27032717.
    12. 12)
      • 12. Tan, D., Leng, Y.G., Gao, Y.J.: ‘Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field’, Eur. Phys. J. Spec. Top., 2015, 224, (14–15), pp. 28392853.
    13. 13)
      • 13. Salim, M., Salleh, H., Loh, E.W.K., et al: ‘New simulation approach for tuneable trapezoidal and rectangular piezoelectric bimorph energy harvesters’, Microsyst. Technol., 2017, 23, (6), pp. 20972106.
    14. 14)
      • 14. Ibrahim, D.S., Muthalif, A.G.A., Nordin, N.H.D., et al: ‘Comparative study of conventional and magnetically coupled piezoelectric energy harvester to optimize output voltage and bandwidth’, Microsyst. Technol., 2017, 23, (7), pp. 26632674.
    15. 15)
      • 15. Jia, Y., Seshia, A.A.: ‘Five topologies of cantilever-based MEMS piezoelectric vibration energy harvesters: a numerical and experimental comparison’, Microsyst. Technol., 2016, 22, (12), pp. 28412852.
    16. 16)
      • 16. Saxena, S., Sharma, R., Pant, B.D.: ‘Design and development of guided four beam cantilever type MEMS based piezoelectric energy harvester’, Microsyst. Technol., 2017, 23, (6), pp. 17511759.
    17. 17)
      • 17. Yao, F.L., Meng, W.J., Gao, S.Q., et al: ‘Research on the master-slave compound multi-cantilever piezoelectric energy harvester’, Microsyst. Technol., 2017, 23, (4), pp. 10271044.
    18. 18)
      • 18. Sordo, G., Serra, E., Schmid, U., et al: ‘Optimization method for designing multimodal piezoelectric MEMS energy harvesters’, Microsyst. Technol., 2016, 22, (7), pp. 18111820.
    19. 19)
      • 19. Liu, Y.Z., Yang, T.Q., Shu, F.M.: ‘Optimization of energy harvesting based on the uniform deformation of piezoelectric ceramic’, Funct. Mater. Lett., 2016, 9, (5), pp. 16.
    20. 20)
      • 20. Sunithamani, S., Lakshmi, P., Eba Flora, E.: ‘PZT length optimization of MEMS piezoelectric energy harvester with a non-traditional cross section: simulation study’, Microsyst. Technol., 2014, 20, (12), pp. 21652171.
    21. 21)
      • 21. Liang, Z., Xu, C., Ren, B., et al: ‘Optimization of cantilevered piezoelectric energy harvester with a fixed resonance frequency’, Sci. China Technol. Sci., 2014, 57, (6), pp. 10931100.
    22. 22)
      • 22. Sunithamani, S., Lakshmi, P.: ‘Simulation study on performance of MEMS piezoelectric energy harvester with optimized substrate to piezoelectric thickness ratio’, Microsyst. Technol., 2015, 21, (4), pp. 733738.
    23. 23)
      • 23. Kirubaveni, S., Radha, S., Sreeja, B.S., et al: ‘Analysis of rectangular and triangular end array type piezoelectric vibration energy harvester’, Microsyst. Technol., 2015, 21, (10), pp. 21652173.
    24. 24)
      • 24. Franco, V.R., Varoto, P.S.: ‘Parameter uncertainties in the design and optimization of cantilever piezoelectric energy harvesters’, Mech. Syst. Signal Process., 2017, 93, pp. 593609.
    25. 25)
      • 25. Thein, C.K., Ooi, B.L., Liu, J.S., et al: ‘Modelling and optimisation of a bimorph piezoelectric cantilever beam in an energy harvesting application’, J. Eng. Sci. Technol., 2016, 11, (2), pp. 212227.
    26. 26)
      • 26. Rupp, C.J., Evgrafov, A., Maute, K., et al: ‘Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells’, J. Intell. Mater. Syst. Struct., 2009, 20, (16), pp. 19231939.
    27. 27)
      • 27. Park, J., Lee, S., Kwak, B.M.: ‘Design optimization of piezoelectric energy harvester subject to tip excitation’, J. Mech. Sci. Technol., 2012, 26, (1), pp. 137143.
    28. 28)
      • 28. Mohamed, R., Sarker, M.R., Mohamed, A.: ‘An optimization of rectangular shape piezoelectric energy harvesting cantilever beam for micro devices’, Int. J. Appl. Electromagn. Mech., 2016, 50, (4), pp. 537548.
    29. 29)
      • 29. DuToit, N.E., Wardle, B.L.: ‘Experimental verification of models for microfabricated piezoelectric vibration energy harvesters’, AIAA J., 2007, 45, (5), pp. 11261137.
    30. 30)
      • 30. Lefeuvre, E., Audigier, D., Richard, C., et al: ‘Buck-boost converter for sensorless power optimization of piezoelectric energy harvester’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 20182025.
    31. 31)
      • 31. Gao, Y., Du, W., Yan, G.: ‘Selectively-informed particle swarm optimization’, Sci. Rep., 2015, 5, p. 9295.
    32. 32)
      • 32. Elrahman, M.K.A.: ‘Fully optimised charge simulation method by using particle swarm optimisation’, IET Sci. Meas. Technol., 2015, 9, pp. 435442.
    33. 33)
      • 33. Jain, S., Kumar, A., Bajaj, V.: ‘Technique for QRS complex detection using particle swarm optimisation’, IET Sci. Meas. Technol., 2016, 10, pp. 626636.
    34. 34)
      • 34. Trelea, I.C.: ‘The particle swarm optimization algorithm: convergence analysis and parameter selection’, Inf. Process. Lett., 2003, 85, (6), pp. 317325.
    35. 35)
      • 35. Li, J., Ren, W., Fan, G., et al: ‘Design and fabrication of piezoelectric micromachined ultrasound transducer (pMUT) with partially-etched ZnO film’, Sensors, 2017, 17, pp. 113.
    36. 36)
      • 36. Kordrostami, Z., Roohizadegan, S.: ‘A groove engineered ultralow frequency piezomems energy harvester with ultrahigh output voltage’, Int. J. Mod. Phys. B, 2018, 32, (20), p. 1850208.
    37. 37)
      • 37. Ghoddus, H., Kordrostami, Z.: ‘Harvesting the ultimate electrical power from mems piezoelectric vibration energy harvesters: an optimization approach’, IEEE Sens. J., 2018, 18, (21), pp. 86678675.
    38. 38)
      • 38. Amiri, P., Kordrostami, Z.: ‘Sensitivity enhancement of MEMS diaphragm hydrophones using an integrated ring MOSFET transducer’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2018, 65, (11), pp. 21212130.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5371
Loading

Related content

content/journals/10.1049/iet-smt.2018.5371
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address