access icon free SPICE-compatible admittance equivalent circuit for stochastic transmission line under external field illumination

For the stochastic transient analysis of transmission line with parameter uncertainties under plane wave illumination, a random admittance equivalent circuit model was presented. Based on the polynomial chaos theory and stochastic Galerkin method, the random transmission line equation was cast into the augmented deterministic transmission line equation. By virtue of eigenfunction decomposition and appropriate acceleration of convergence, a SPICE-compatible Foster form of admittance equivalent circuit model was obtained. The random boundary condition for non-linear loads was solved by applying the Gauss quadrature rule. Application examples validate the accuracy and efficiency of the presented methodology.

Inspec keywords: chaos; eigenvalues and eigenfunctions; SPICE; polynomials; stochastic processes; equivalent circuits; Galerkin method

Other keywords: random transmission line equation; SPICE-compatible Foster form; stochastic Galerkin method; plane wave illumination; SPICE-compatible admittance equivalent circuit; eigenfunction decomposition; Gauss quadrature rule; parameter uncertainties; random admittance equivalent circuit model; external field illumination; stochastic transient analysis; stochastic transmission line; nonlinear loads; augmented deterministic transmission line equation; polynomial chaos theory; random boundary condition

Subjects: Other topics in statistics; Linear algebra (numerical analysis); General circuit analysis and synthesis methods; Semiconductor integrated circuit design, layout, modelling and testing; Mathematical analysis; Chaotic behaviour in circuits; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 27. Leone, M., Friedrich, M., Mantzke, A.: ‘Efficient broadband circuit-modeling approach for parallel-plane structures of arbitrary shape’, IEEE Trans. Electromagn. Compat., 2013, 55, (5), pp. 941948.
    2. 2)
      • 11. Xiu, D., Karniadakis, G.E.: ‘The Wiener–Askey polynomial chaos for stochastic differential equations’, SIAM J. Sci. Comput., 2002, 24, (2), pp. 619644.
    3. 3)
      • 20. Manfredi, P., Ginste, D.V., Zutter, D.D., et al: ‘Stochastic modeling of nonlinear circuits via SPICE-compatible spectral equivalents’, IEEE Trans. Circuits Syst., 2014, 61, (7), pp. 20572065.
    4. 4)
      • 7. Mikazuki, T., Matsui, N.: ‘Statistical design techniques for high-speed circuit boards with correlated structure distributions’, IEEE Trans. Compon. Packag. Manuf. Technol., 1994, 17, (1), pp. 159165.
    5. 5)
      • 8. Zhang, Q., Liou, J.J., McMacken, J., et al: ‘Development of robust interconnect model based on design of experiments and multi-objective optimization’, IEEE Trans. Electron Devices, 2001, 48, (9), pp. 18851891.
    6. 6)
      • 2. Stievano, I.S., Manfredi, P., Canavero, F.G.: ‘Stochastic analysis of multiconductor cables and interconnects’, IEEE Trans. Electromagn. Compat., 2011, 53, (2), pp. 501507.
    7. 7)
      • 16. Sumant, P., Wu, H., Cangellaris, A., et al: ‘Reduced-order models of finite element approximations of electromagnetic devices exhibiting statistical variability’, IEEE Trans. Antennas Propag., 2012, 60, (1), pp. 301309.
    8. 8)
      • 17. Stievano, I.S., Manfredi, P., Canavero, F.G.: ‘Parameters variability effects on multiconductor interconnects via hermite polynomial chaos’, IEEE Trans. Compon. Packag. Manuf. Technol., 2014, 4, (4), pp. 673684.
    9. 9)
      • 14. Zhang, Z., Elfadel, I.M., Daniel, L.: ‘Uncertainty quantification for integrated circuits: stochastic spectral methods’. IEEE/ACM Int. Conf. on Computer-Aided Design, San Jose, CA, USA, 2013, pp. 803810.
    10. 10)
      • 25. Vahrenholt, V., Leone, M.: ‘Efficient Foster-type macromodels for rectangular planar interconnections’, IEEE Trans. Compon. Packag. Manuf. Technol., 2012, 2, (10), pp. 16861695.
    11. 11)
      • 24. Prasad, A.K., Roy, S.: ‘Multidimensional variability analysis of complex power distribution networks via scalable stochastic collocation approach’, IEEE Trans. Compon. Packag. Manuf. Technol., 2015, 5, (11), pp. 16561668.
    12. 12)
      • 10. Spadacini, G., Pignari, S.A.: ‘Numerical assessment of radiated susceptibility of twisted-wire pairs with random nonuniform twisting’, IEEE Trans. Electromagn. Compat., 2013, 55, (5), pp. 956964.
    13. 13)
      • 32. Lu, J.M.: ‘High-speed system modelling and analysis based on cavity resonant theory’. PhD thesis, Xidian University, 2012.
    14. 14)
      • 12. Xiu, D.: ‘Numerical methods for stochastic computations: a spectral method approach’ (Princeton University Press, New Jersey, USA, 2010).
    15. 15)
      • 4. Jenu, M.Z.M., Sayegh, A.M.: ‘Prediction of radiated emissions from high-speed printed circuit board traces using dipole antenna and imbalance difference model’, IET Sci. Meas. Technol., 2016, 10, (1), pp. 2837.
    16. 16)
      • 34. Leone, M., Singer, H.L.: ‘On the coupling of an external electromagnetic field to a printed circuit board trace’, IEEE Trans. Electromagn. Compat., 1999, 41, (4), pp. 418424.
    17. 17)
      • 1. Vrudhula, S., Wang, J., Ghanta, P.: ‘Hermite polynomial based interconnect analysis in the presence of process variations’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2006, 25, (10), pp. 20012011.
    18. 18)
      • 9. Fishman, G.: ‘Monte Carlo: concepts, algorithms, and applications’ (Springer Science & Business Media, New York, USA, 2013).
    19. 19)
      • 13. Strunz, K., Su, Q.: ‘Stochastic formulation of SPICE-type electronic circuit simulation with polynomial chaos’, ACM Trans. Model. Comput. Simul., 2008, 18, (4), pp. 15:115:23.
    20. 20)
      • 35. Taeb, A., Abdipour, A., Mohhamadi, A.: ‘FDTD analysis of the lossy coupled transmission lines loaded by nonlinear devices’. Asia-Pacific Microwave Conf. Proc., Suzhou, China, 2005.
    21. 21)
      • 23. Manfredi, P., Ginste, D.V., Zutter, D.D., et al: ‘On the passivity of polynomial chaos-based augmented models for stochastic circuits’, IEEE Trans. Circuits Syst., 2013, 60, (11), pp. 29983007.
    22. 22)
      • 26. Friedrich, M., Leone, M.: ‘Inductive network model for the radiation analysis of electrically small parallel-plate structures’, IEEE Trans. Electromagn. Compat., 2011, 53, (4), pp. 10151024.
    23. 23)
      • 29. Sudekum, S., Mantzke, A., Leone, M.: ‘Efficient modal network model for nonuniform transmission lines including field coupling’, IEEE Trans. Electromagn. Compat., 2014, 58, (4), pp. 13591366.
    24. 24)
      • 5. Paul, C.R.: ‘Analysis of multiconductor transmission lines’ (John Wiley & Sons, New York, USA, 1994, 1st edn.).
    25. 25)
      • 28. Leone, M., Mantzke, A.: ‘A Foster-type field-to-transmission line coupling model for broadband simulation’, IEEE Trans. Electromagn. Compat., 2014, 56, (6), pp. 16301637.
    26. 26)
      • 6. Spadacini, G., Grassi, F., Marliani, F., et al: ‘Transmission line model for field-to-wire coupling in bundles of twisted-wire pairs above ground’, IEEE Trans. Electromagn. Compat., 2014, 56, (6), pp. 16821690.
    27. 27)
      • 31. Bednarz, C., Lange, C., Sudekum, S., et al: ‘Broadband circuit model for wire interconnection structures based on a mom-eigenvalue approach’, IEEE Trans. Electromagn. Compat., 2017, 59, (6), pp. 19161924.
    28. 28)
      • 3. Spina, D., Ferranti, F., Dhaene, T., et al: ‘Variability analysis of multiport systems via polynomial-chaos expansion’, IEEE Trans. Microw. Theory Tech., 2012, 60, (8), pp. 23292338.
    29. 29)
      • 15. Manfredi, P., Canavero, F.G.: ‘Polynomial chaos for random field coupling to transmission lines’, IEEE Trans. Electromagn. Compat., 2012, 54, (3), pp. 677680.
    30. 30)
      • 21. Ginste, D.V., Zutter, D.D., Deschrijiver, D., et al: ‘Stochastic modeling-based variability analysis of on-chip interconnects’, IEEE Trans. Compon. Packag. Manuf. Technol., 2012, 2, (7), pp. 11821192.
    31. 31)
      • 30. Sudekum, S., Mantzke, A., Leone, M.: ‘Broadband equivalent-circuit model for uniform multiconductor transmission lines’, IEEE Trans. Electromagn. Compat., 2017, 59, (4), pp. 12521259.
    32. 32)
      • 19. Rufuie, M.R., Gad, E., Nakhla, M., et al: ‘Generalized hermite polynomial chaos for variability analysis of macromodels embedded in nonlinear circuits’, IEEE Trans. Compon. Packag. Manuf. Technol., 2014, 4, (4), pp. 673684.
    33. 33)
      • 18. Spina, D., Jonghe, D.D., Deschrijver, D., et al: ‘Stochastic macromodeling of nonlinear systems via polynomial chaos expansion and transfer function trajectories’, IEEE Trans. Microw. Theory Tech., 2014, 62, (7), pp. 14541460.
    34. 34)
      • 33. Shall, H., Riah, Z., Kadi, M.: ‘A new approach for modelling nead-field coupling with PCB traces’, IEEE Trans. Electromagn. Compat., 2014, 56, (5), pp. 11941201.
    35. 35)
      • 22. Manfredi, P., Ginste, D.V., Zutter, D.D., et al: ‘Uncertainty assessment of lossy and dispersive lines in SPICE-type environments’, IEEE Trans. Compon. Packag. Manuf. Technol., 2013, 3, (7), pp. 12521258.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5361
Loading

Related content

content/journals/10.1049/iet-smt.2018.5361
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading