http://iet.metastore.ingenta.com
1887

SPICE-compatible admittance equivalent circuit for stochastic transmission line under external field illumination

SPICE-compatible admittance equivalent circuit for stochastic transmission line under external field illumination

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For the stochastic transient analysis of transmission line with parameter uncertainties under plane wave illumination, a random admittance equivalent circuit model was presented. Based on the polynomial chaos theory and stochastic Galerkin method, the random transmission line equation was cast into the augmented deterministic transmission line equation. By virtue of eigenfunction decomposition and appropriate acceleration of convergence, a SPICE-compatible Foster form of admittance equivalent circuit model was obtained. The random boundary condition for non-linear loads was solved by applying the Gauss quadrature rule. Application examples validate the accuracy and efficiency of the presented methodology.

References

    1. 1)
      • 1. Vrudhula, S., Wang, J., Ghanta, P.: ‘Hermite polynomial based interconnect analysis in the presence of process variations’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2006, 25, (10), pp. 20012011.
    2. 2)
      • 2. Stievano, I.S., Manfredi, P., Canavero, F.G.: ‘Stochastic analysis of multiconductor cables and interconnects’, IEEE Trans. Electromagn. Compat., 2011, 53, (2), pp. 501507.
    3. 3)
      • 3. Spina, D., Ferranti, F., Dhaene, T., et al: ‘Variability analysis of multiport systems via polynomial-chaos expansion’, IEEE Trans. Microw. Theory Tech., 2012, 60, (8), pp. 23292338.
    4. 4)
      • 4. Jenu, M.Z.M., Sayegh, A.M.: ‘Prediction of radiated emissions from high-speed printed circuit board traces using dipole antenna and imbalance difference model’, IET Sci. Meas. Technol., 2016, 10, (1), pp. 2837.
    5. 5)
      • 5. Paul, C.R.: ‘Analysis of multiconductor transmission lines’ (John Wiley & Sons, New York, USA, 1994, 1st edn.).
    6. 6)
      • 6. Spadacini, G., Grassi, F., Marliani, F., et al: ‘Transmission line model for field-to-wire coupling in bundles of twisted-wire pairs above ground’, IEEE Trans. Electromagn. Compat., 2014, 56, (6), pp. 16821690.
    7. 7)
      • 7. Mikazuki, T., Matsui, N.: ‘Statistical design techniques for high-speed circuit boards with correlated structure distributions’, IEEE Trans. Compon. Packag. Manuf. Technol., 1994, 17, (1), pp. 159165.
    8. 8)
      • 8. Zhang, Q., Liou, J.J., McMacken, J., et al: ‘Development of robust interconnect model based on design of experiments and multi-objective optimization’, IEEE Trans. Electron Devices, 2001, 48, (9), pp. 18851891.
    9. 9)
      • 9. Fishman, G.: ‘Monte Carlo: concepts, algorithms, and applications’ (Springer Science & Business Media, New York, USA, 2013).
    10. 10)
      • 10. Spadacini, G., Pignari, S.A.: ‘Numerical assessment of radiated susceptibility of twisted-wire pairs with random nonuniform twisting’, IEEE Trans. Electromagn. Compat., 2013, 55, (5), pp. 956964.
    11. 11)
      • 11. Xiu, D., Karniadakis, G.E.: ‘The Wiener–Askey polynomial chaos for stochastic differential equations’, SIAM J. Sci. Comput., 2002, 24, (2), pp. 619644.
    12. 12)
      • 12. Xiu, D.: ‘Numerical methods for stochastic computations: a spectral method approach’ (Princeton University Press, New Jersey, USA, 2010).
    13. 13)
      • 13. Strunz, K., Su, Q.: ‘Stochastic formulation of SPICE-type electronic circuit simulation with polynomial chaos’, ACM Trans. Model. Comput. Simul., 2008, 18, (4), pp. 15:115:23.
    14. 14)
      • 14. Zhang, Z., Elfadel, I.M., Daniel, L.: ‘Uncertainty quantification for integrated circuits: stochastic spectral methods’. IEEE/ACM Int. Conf. on Computer-Aided Design, San Jose, CA, USA, 2013, pp. 803810.
    15. 15)
      • 15. Manfredi, P., Canavero, F.G.: ‘Polynomial chaos for random field coupling to transmission lines’, IEEE Trans. Electromagn. Compat., 2012, 54, (3), pp. 677680.
    16. 16)
      • 16. Sumant, P., Wu, H., Cangellaris, A., et al: ‘Reduced-order models of finite element approximations of electromagnetic devices exhibiting statistical variability’, IEEE Trans. Antennas Propag., 2012, 60, (1), pp. 301309.
    17. 17)
      • 17. Stievano, I.S., Manfredi, P., Canavero, F.G.: ‘Parameters variability effects on multiconductor interconnects via hermite polynomial chaos’, IEEE Trans. Compon. Packag. Manuf. Technol., 2014, 4, (4), pp. 673684.
    18. 18)
      • 18. Spina, D., Jonghe, D.D., Deschrijver, D., et al: ‘Stochastic macromodeling of nonlinear systems via polynomial chaos expansion and transfer function trajectories’, IEEE Trans. Microw. Theory Tech., 2014, 62, (7), pp. 14541460.
    19. 19)
      • 19. Rufuie, M.R., Gad, E., Nakhla, M., et al: ‘Generalized hermite polynomial chaos for variability analysis of macromodels embedded in nonlinear circuits’, IEEE Trans. Compon. Packag. Manuf. Technol., 2014, 4, (4), pp. 673684.
    20. 20)
      • 20. Manfredi, P., Ginste, D.V., Zutter, D.D., et al: ‘Stochastic modeling of nonlinear circuits via SPICE-compatible spectral equivalents’, IEEE Trans. Circuits Syst., 2014, 61, (7), pp. 20572065.
    21. 21)
      • 21. Ginste, D.V., Zutter, D.D., Deschrijiver, D., et al: ‘Stochastic modeling-based variability analysis of on-chip interconnects’, IEEE Trans. Compon. Packag. Manuf. Technol., 2012, 2, (7), pp. 11821192.
    22. 22)
      • 22. Manfredi, P., Ginste, D.V., Zutter, D.D., et al: ‘Uncertainty assessment of lossy and dispersive lines in SPICE-type environments’, IEEE Trans. Compon. Packag. Manuf. Technol., 2013, 3, (7), pp. 12521258.
    23. 23)
      • 23. Manfredi, P., Ginste, D.V., Zutter, D.D., et al: ‘On the passivity of polynomial chaos-based augmented models for stochastic circuits’, IEEE Trans. Circuits Syst., 2013, 60, (11), pp. 29983007.
    24. 24)
      • 24. Prasad, A.K., Roy, S.: ‘Multidimensional variability analysis of complex power distribution networks via scalable stochastic collocation approach’, IEEE Trans. Compon. Packag. Manuf. Technol., 2015, 5, (11), pp. 16561668.
    25. 25)
      • 25. Vahrenholt, V., Leone, M.: ‘Efficient Foster-type macromodels for rectangular planar interconnections’, IEEE Trans. Compon. Packag. Manuf. Technol., 2012, 2, (10), pp. 16861695.
    26. 26)
      • 26. Friedrich, M., Leone, M.: ‘Inductive network model for the radiation analysis of electrically small parallel-plate structures’, IEEE Trans. Electromagn. Compat., 2011, 53, (4), pp. 10151024.
    27. 27)
      • 27. Leone, M., Friedrich, M., Mantzke, A.: ‘Efficient broadband circuit-modeling approach for parallel-plane structures of arbitrary shape’, IEEE Trans. Electromagn. Compat., 2013, 55, (5), pp. 941948.
    28. 28)
      • 28. Leone, M., Mantzke, A.: ‘A Foster-type field-to-transmission line coupling model for broadband simulation’, IEEE Trans. Electromagn. Compat., 2014, 56, (6), pp. 16301637.
    29. 29)
      • 29. Sudekum, S., Mantzke, A., Leone, M.: ‘Efficient modal network model for nonuniform transmission lines including field coupling’, IEEE Trans. Electromagn. Compat., 2014, 58, (4), pp. 13591366.
    30. 30)
      • 30. Sudekum, S., Mantzke, A., Leone, M.: ‘Broadband equivalent-circuit model for uniform multiconductor transmission lines’, IEEE Trans. Electromagn. Compat., 2017, 59, (4), pp. 12521259.
    31. 31)
      • 31. Bednarz, C., Lange, C., Sudekum, S., et al: ‘Broadband circuit model for wire interconnection structures based on a mom-eigenvalue approach’, IEEE Trans. Electromagn. Compat., 2017, 59, (6), pp. 19161924.
    32. 32)
      • 32. Lu, J.M.: ‘High-speed system modelling and analysis based on cavity resonant theory’. PhD thesis, Xidian University, 2012.
    33. 33)
      • 33. Shall, H., Riah, Z., Kadi, M.: ‘A new approach for modelling nead-field coupling with PCB traces’, IEEE Trans. Electromagn. Compat., 2014, 56, (5), pp. 11941201.
    34. 34)
      • 34. Leone, M., Singer, H.L.: ‘On the coupling of an external electromagnetic field to a printed circuit board trace’, IEEE Trans. Electromagn. Compat., 1999, 41, (4), pp. 418424.
    35. 35)
      • 35. Taeb, A., Abdipour, A., Mohhamadi, A.: ‘FDTD analysis of the lossy coupled transmission lines loaded by nonlinear devices’. Asia-Pacific Microwave Conf. Proc., Suzhou, China, 2005.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5361
Loading

Related content

content/journals/10.1049/iet-smt.2018.5361
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address