access icon free Design and development of travelling-wave-frequency-based transmission line fault locator using TMS320 DSP

The authors use a TMS320 digital signal processor (TMS320-DSP) to determine fault instants and estimate their location in real time in a laboratory environment. The fault instant is determined via examining the instantaneous differential changes in the line currents. After the fault is detected, the fault location is determined by processing the time-domain transient current waves. First, the travelling-wave frequency is determined by application of the fast Fourier transform to the positive-sequence-component line current after the fault, and subsequently, the fault location is estimated by utilising this frequency. The alternative transients programme (ATP)–electromagnetic transient programme is used to simulate the line currents and create short-circuit fault conditions. Furthermore, LabVIEW software and a National Instruments data acquisition board are used to transform the line currents obtained through the ATP programme into analogue signals. The TMS320-DSP determines the fault in real time and estimates the fault location using the completed software and analogue input signals. Their results indicate that the prototype device designed with the use of the TMS320-DSP is suitable for real-time fault detection.

Inspec keywords: virtual instrumentation; fault location; power transmission lines; power distribution faults; fault diagnosis; EMTP; data acquisition; signal processing; power transmission faults; digital signal processing chips; fast Fourier transforms; power system transients

Other keywords: fault location; line currents; short-circuit fault conditions; travelling-wave frequency; alternative transients programme–electromagnetic transient programme; fault instant; TMS320 digital signal processor; travelling-wave-frequency-based transmission line fault locator; real-time fault detection; TMS320-DSP; positive-sequence-component line; time-domain transient current waves

Subjects: Microprocessors and microcomputers; Power system protection; Power engineering computing; Integral transforms

References

    1. 1)
      • 21. Megahed, A.I., Elrefaie, H.B., Moussa, A.M., et al: ‘Wavelet based fault location technique for two and three terminal lines’. Power and Energy Society General Meeting, San Diego, CA, USA, 2012, pp. 17.
    2. 2)
      • 24. Texas instruments-TMS320F2833x, TMS320F2823x digital signal controllers (DSCs) pdf’. Available at http://www.ti.com/lit/ds/symlink/tms320f28335.pdf, accessed 09 October 2017.
    3. 3)
      • 10. Ezquerra, J., Valverde, V., Mazon, A.J., et al: ‘Field programmable gate array implementation of a fault location system in transmission lines based on artificial neural networks’, IET Gener. Transm. Distrib., 2011, 5, (2), pp. 191198.
    4. 4)
      • 3. Babu, K.V., Tripathy, M., Singh, A.K.: ‘Recent techniques used in transmission line protection: a review’, Int. J. Eng., Sci. Technol., 2011, 3, (3), pp. 18.
    5. 5)
      • 9. Adhikari, S., Sinha, N., Dorendrajit, T.: ‘Fuzzy logic based on-line fault detection and classification in transmission line’, SpringerPlus, 2016, 5, (1), pp. 114.
    6. 6)
      • 20. Lin, S., He, Z.Y., Li, X.P., et al: ‘Travelling wave time–frequency characteristic-based fault location method for transmission lines’, IET Gener. Transm. Distrib., 2012, 6, (8), pp. 764772.
    7. 7)
      • 11. Jiang, J.A., Chuang, C.L., Wang, Y.C., et al: ‘A hybrid framework for fault detection, classification, and location – part I: concept, structure, and methodology’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 19881998.
    8. 8)
      • 15. Mamiş, M.S., Arkan, M.: ‘FFT based fault location algorithm for transmission lines’. Seventh Int. Conf. Electrical and Electronics Engineering (ELECO), Bursa, Turkey, December 2011, pp. I71.
    9. 9)
      • 27. Travis, J., Wells, L.K.: ‘LabVIEW for everyone with CDROM’ (Prentice-Hall PTR, USA, 2001).
    10. 10)
      • 4. Saha, M.M., Das, R., Verho, P., et al: ‘Review of fault location techniques for distribution systems’. Power Systems and Communications Infrastructures for the future, Beijing, China, 2002.
    11. 11)
      • 12. Jiang, J.A., Chuang, C.L., Wang, Y.C.: ‘A hybrid framework for fault detection, classification, and location – part II: implementation and test results’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 19992008.
    12. 12)
      • 17. Akmaz, D., Mamis, M.S., Arkan, M, et al: ‘Travelling-wave based fault distance estimation for series compensated transmission lines using EMTP-ATP’. EEUG European EMTP-ATP Conf., Grenoble, France, September 2015, pp. 151161.
    13. 13)
      • 26. Elliott, C., Vijayakumar, V., Zink, W., et al: ‘National instruments LabVIEW: a programming environment for laboratory automation and measurement’, JALA: J. Assoc. Lab. Autom., 2007, 12, (1), pp. 1724.
    14. 14)
      • 7. Goh, Y.L., Ramasamy, A.K., Nagi, F.H., et al: ‘DSP based fuzzy and conventional overcurrent relay controller comparisons’, Microelectron. Reliab., 2013, 53, (7), pp. 10291035.
    15. 15)
      • 28. NI 6351 device specifications – national instruments pdf’. Available at http://www.ni.com/pdf/manuals/374591d.pdf, accessed 09 October 2017.
    16. 16)
      • 23. Texas instruments-hardware design guidelines for Tms320F28xx and Tms320F28xxx DSCs’. Available at http://data.eefocus.com/openhard/source/39e8d6bef72a87eb61ce4e37d1d1ec78.pdf, accessed 09 October 2017.
    17. 17)
      • 13. Koley, E., Kumar, R., Ghosh, S.: ‘Low cost microcontroller based fault detector, classifier, zone identifier and locator for transmission lines using wavelet transform and artificial neural network: a hardware co-simulation approach’, Int. J. Electr. Power Energy Syst., 2016, 81, pp. 346360.
    18. 18)
      • 19. Akmaz, D., Mamiş, M.S., Arkan, M., et al: ‘Transmission line fault location using traveling wave frequencies and extreme learning machine’, Electr. Power Syst. Res., 2018, 155, pp. 17.
    19. 19)
      • 2. Gururajapathy, S.S., Mokhlis, H., Illias, H.A.: ‘Fault location and detection techniques in power distribution systems with distributed generation: a review’, Renew. Sustain. Energy Rev., 2017, 74, pp. 949958.
    20. 20)
      • 1. Chen, K., Huang, C., He, J.: ‘Fault detection, classification and location for transmission lines and distribution systems: a review on the methods’, High Volt., 2016, 1, (1), pp. 2533.
    21. 21)
      • 18. Akmaz, D., Mamiş, M.S., Arkan, M., et al: ‘Fault location determination for transmission lines with different series-compensation levels using transient frequencies’, Turk. J. Electr. Eng. Comput. Sci., 2017, 25, (5), pp. 37643775.
    22. 22)
      • 8. Valsan, S.P., Swarup, K.S.: ‘High-speed fault classification in power lines: theory and FPGA-based implementation’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 17931800.
    23. 23)
      • 25. Meyer, W.S., Liu, T.H.: ‘Alternative transients program (ATP) rule book’ (Canadian/American EMTP User Group, USA, 1987–1992).
    24. 24)
      • 22. Malinowski, A., Yu, H.: ‘Comparison of embedded system design for industrial applications’, IEEE Trans. Ind. Inf., 2011, 7, (2), pp. 244254.
    25. 25)
      • 16. Akmaz, D., Mamiş, M.S., Arkan, M., et al: ‘Fault location on series compensated power transmission lines using transient spectrum’. 23rd IEEE Signal Processing and Communications Applications Conf. (SIU), Malatya, Turkey, May 2015, pp. 951954.
    26. 26)
      • 14. Mamiş, M.S., Arkan, M., Keleş, C.: ‘Transmission lines fault location using transient signal spectrum’, Int. J. Electr. Power Energy Syst., 2013, 53, pp. 714718.
    27. 27)
      • 5. Wang, Y., Dinavahi, V.: ‘Low-latency distance protective relay on FPGA’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 896905.
    28. 28)
      • 6. Goh, Y.L., Ramasamy, A.K., Nagi, F.H., et al: ‘DSP based overcurrent relay using fuzzy bang–bang controller’, Microelectron. Reliab., 2011, 51, (12), pp. 23662373.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5357
Loading

Related content

content/journals/10.1049/iet-smt.2018.5357
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading