access icon free Bilateral photoplethysmography for peripheral arterial disease screening in haemodialysis patients using astable multivibrator and machine learning classifier

Peripheral arterial disease (PAD) is highly prevalent in haemodialysis (HD) patients with type 2 diabetes. Atherosclerosis may occur in both lower and upper peripheral arteries, causing progressive dialysis access stenosis in HD patients. To assess the risk of PAD, non-invasive bilateral photoplethysmography (PPG) can be used to obtain continuous variations in blood flow volume in in vivo examinations. The authors propose an astable multivibrator to model the peripheral circulation system and to produce PPG oscillation with time constants, duty ratio (rising time), and amplitude ratio of systolic and diastolic pressures. Then, the bilateral differences in the time constant and duty ratio are used to separate the normal condition from PAD. The machine learning decision-making process utilises a screening method to automatically detect subjects with and without the risk of PAD. The radial-based function is employed to parameterise the similarity and dissimilarity levels using probability values. Colour relation analysis incorporates the probability values into the perceptual colour relationships for PAD screening. The experimental results indicate that in comparison with bilateral timing parameters, degree of stenosis, and resistive index, the proposed screening method is efficient in preventing complications of PAD and is easily implemented in an embedded system.

Inspec keywords: medical signal processing; photoplethysmography; learning (artificial intelligence); diseases; probability; haemodynamics; blood vessels

Other keywords: noninvasive bilateral photoplethysmography; screening method; astable multivibrator; continuous variations; probability values; systolic pressures; colour relation analysis; atherosclerosis; machine learning decision-making process; blood flow volume; upper peripheral arteries; type 2 diabetes; rising time; radial-based function; diastolic pressures; bilateral timing parameters; progressive dialysis access stenosis; HD patients; amplitude ratio; perceptual colour relationships; peripheral arterial disease screening; machine learning classifier; lower peripheral arteries; embedded system; PAD screening; resistive index; haemodialysis patients; PPG oscillation; bilateral differences; duty ratio; in vivo examinations; time constants; peripheral circulation system

Subjects: Other topics in statistics; Biology and medical computing; Optical and laser radiation (medical uses); Haemodynamics, pneumodynamics; Patient diagnostic methods and instrumentation; Digital signal processing; Knowledge engineering techniques; Other topics in statistics; Optical and laser radiation (biomedical imaging/measurement); Signal processing and detection

References

    1. 1)
      • 26. Chen, W.L., Kan, C.D., Lin, C.H.: ‘Assessment of inflow and outflow stenoses using big spectral data and radial-based color relation analysis on in vitro arteriovenous graft biophysical experimental model’, IET Cyber-Physical Syst. Theory Appl., 2017, 2, (1), pp. 1019.
    2. 2)
      • 5. Lin, M.S., Hsu, K.Y., Chen, Y.J., et al: ‘Prevalence and risk factors of asymptomatic peripheral arterial disease in patients with COPD in Taiwan’, PLoS ONE, 2013, 8, (5), pp. 16.
    3. 3)
      • 12. Qiu, W., Yu, Y., Tsang, F.K., et al: ‘An FPGA- based open platform for ultrasound biomicroscopy’, IEEE Trans. Ultrason. Ferroelect., Freq., Control, 2012, 59, (7), pp. 14321442.
    4. 4)
      • 15. Wu, J.X., Li, C.M., Ho, Y.R., et al: ‘Bilateral photoplethysmography analysis for peripheral arterial stenosis screening with a fractional-order integrator and info-gap decision- making’, IEEE Sens. J., 2016, 16, (8), pp. 26912700.
    5. 5)
      • 23. Cohn, J.: ‘Arterial compliance to stratify cardiovascular risk: more precision in therapeutic decision making, ‘Am. J. Hypertens., 2001, 14, (8), p. S258.
    6. 6)
      • 19. Yousef, Q., Reaz, M.B.I., Ali, M.A.M.: ‘The analysis of PPG morphology: investigating the effects of aging on arterial compliance’, Meas. Sci. Rev., 2012, 12, (6), pp. 266271.
    7. 7)
      • 14. Nguyen, L.C., Yu, F.T.H., Cloutier, G.: ‘Cyclic changes in blood echogenicity under pulsatile flow are frequency dependent’, Ulrasound Med. Biol., 2008, 34, (4), pp. 664673.
    8. 8)
      • 29. Sarikaya, R., Hinton, G.E., Deoras, A.: ‘Application of deep belief networks for neural language understanding’, IEEE/ACM Trans. Audio, Speech Lang. Process., 2014, 22, (4), pp. 778784.
    9. 9)
      • 32. Nitzan, M., Khonokh, B., Slovik, Y.: ‘The difference in pulse transit time to the toe and figure measured by photo-plethysmography’, Physiol. Meas., 2002, 23, pp. 8593.
    10. 10)
      • 27. Alpaydin, E.: ‘Introduction to machine learning-from adaptive computation and machine learning’ (The MIT Press, London, 2010).
    11. 11)
      • 17. Allen, J., Oates, C.P., Lees, T.A., et al: ‘Photo-plethysmography detection of lower limb peripheral arterial occlusive disease: a comparison of pulse timing, amplitude and shape characteristics’, Physiol. Meas., 2005, 26, pp. 811821.
    12. 12)
      • 21. Wu, J.X., Li, C.M., Chen, G.C., et al: ‘Peripheral arterial disease screening for hemodialysis patients using a fractional-order integrator and transition probability decision-making model’, IET Syst. Biol., 2017, 11, (2), pp. 6976.
    13. 13)
      • 2. O'Hare, A.M., Johansen, K.L.: ‘Peripheral vascular disease in end-stage renal disease patients’, Int. J. Artif. Organs, 2002, 25, p. 1123.
    14. 14)
      • 13. Xu, X., Yen, J.T., Shung, K.K.: ‘A low-cost bipolar pulse generator for high-frequency ultrasound imaging’, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2007, 54, (2), pp. 443447.
    15. 15)
      • 33. Lim, P.S., Jeng, Y., Wu, M.Y., et al: ‘Role of cilostazol therapy in hemodialysis patients with asymptomatic peripheral arterial disease: a retrospective cohort study’, BioMed Res. Int., 2016, 2016, pp. 18.
    16. 16)
      • 22. Tozzi, P., Corno, A., Hayoz, D.: ‘Definition of arterial compliance’, Am. J. Physiol. Heart Circ. Physiol., 2000, 278, (4), p. H1407.
    17. 17)
      • 3. Tian, S.L., Murphy, M., Han, Q.F., et al: ‘Prevalence and risk factors for peripheral artery disease among patients on maintenance peritoneal dialysis’, Blood Purif., 2010, 30, pp. 5055.
    18. 18)
      • 11. Lin, C.H., Kan, C.D., Chen, W.L., et al: ‘An equivalent astable multivibrator model to assess flow instability and dysfunction risk in in-vitro stenotic arteriovenous grafts’, Technol. Health Care, 2016, 24, pp. 295308.
    19. 19)
      • 25. Fish, P.: ‘Physics and instrumentation of diagnostic medical ultrasound’ (Joon Wiley & Sons Ltd., USA), ISBN 0-471-92651-5.
    20. 20)
      • 1. O'Hare, A., Johansen, K.: ‘Lower-extremity peripheral arterial disease among patients with end-stage renal disease’, J. Am. Soc. Nephrol., 2001, 12, p. 2838.
    21. 21)
      • 30. Doering, E.: ‘NI myRIO-project essentials guide’ (National Technology and Science Press, USA, 2014).
    22. 22)
      • 16. Jayasree, V.K., Sandhya, T.V., Radhakrishnan, P.: ‘Non-invasive studies on age related parameters using a blood volume pulse sensor’, Meas. Sci. Rev., 2008, 8, (4), pp. 8286.
    23. 23)
      • 24. Chen, W.L., Lin, Y.H., Kan, C.D., et al: ‘Assessment of flow instabilities in in-vitro stenotic arteriovenous grafts using an equivalent astable multivibrator’, IET Sci. Meas. Technol., 2015, 9, (6), pp. 709716.
    24. 24)
      • 9. Manos, T.A., Sokolis, D.P., Giagini, A.T., et al: ‘Local hemodynamics and intimal hyperplasia at the venous side of a porcine arteriovenous shunt’, IEEE Trans. Inf. Technol. Biomed., 2010, 14, (3), pp. 681690.
    25. 25)
      • 31. Allen, J., Overbeck, K., Nath, A.F., et al: ‘A prospective comparison of bilateral photoplethy-smography versus the ankle-brachial pressure index for detecting and quantifying lower limb peripheral arterial disease’, J. Vasc. Surg., 2008, 47, pp. 794802.
    26. 26)
      • 10. Shen, C.C., Lin, C.H.: ‘Chirp-encoded excitation for dual-frequency ultrasound tissue harmonic imaging’, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 2012, 59, (11), pp. 24202430.
    27. 27)
      • 8. Wu, J.X., Chen, G.C., Wu, M.J., et al: ‘Bilateral photoplethysmography for arterial steal detection in arteriovenous fistula using a fractional-order decision-making quantizer’, Med. Biol. Eng. Comput., 2017, 55, (2), pp. 257270.
    28. 28)
      • 4. Lee, C.C., Wu, C.J., Chou, L.H., et al: ‘Peripheral artery disease in peritoneal dialysis and hemodialysis patients: single-center retrospective study in Taiwan’, BMC Nephrol., 2012, 13, (100), pp. 18.
    29. 29)
      • 6. Tordoir, J.H.M., Dammers, R., Sande, F.M.: ‘Upper extremity ischemia and hemodialysis vascular access’, Eur. J. Vasc. Endovasc. Surg., 2004, 27, pp. 15.
    30. 30)
      • 28. Bridge, J.P., Holden, S.B., Paulson, L.C.: ‘Machine learning for first-order theorem proving’, J. Autom. Reasoning, 2014, 53, (2), pp. 141172.
    31. 31)
      • 18. Allen, J.: ‘Photoplethysmography and its application in clinical physiological measurement’, Physiol. Meas., 2007, 28, (3), pp. R139.
    32. 32)
      • 7. Leon, C., Asif, A.: ‘Arteriovenous access and hand pain: the distal hypoperfusion ischemic syndrome’, Clin. J. Am. Soc. Nephrol., 2007, 2, (1), pp. 175183.
    33. 33)
      • 20. Rubins, U., Grube, J., Kukulis, I.: ‘Photoplethsmography analysis of artery properties in patients with cardiovascular diseases’. 14th Nordic-Baltic Conf. on Biomedical Engineering and Medical Physics, Riga, Latvia, June 2008, pp. 319322.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5330
Loading

Related content

content/journals/10.1049/iet-smt.2018.5330
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading