http://iet.metastore.ingenta.com
1887

Bilateral photoplethysmography for peripheral arterial disease screening in haemodialysis patients using astable multivibrator and machine learning classifier

Bilateral photoplethysmography for peripheral arterial disease screening in haemodialysis patients using astable multivibrator and machine learning classifier

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Peripheral arterial disease (PAD) is highly prevalent in haemodialysis (HD) patients with type 2 diabetes. Atherosclerosis may occur in both lower and upper peripheral arteries, causing progressive dialysis access stenosis in HD patients. To assess the risk of PAD, non-invasive bilateral photoplethysmography (PPG) can be used to obtain continuous variations in blood flow volume in in vivo examinations. The authors propose an astable multivibrator to model the peripheral circulation system and to produce PPG oscillation with time constants, duty ratio (rising time), and amplitude ratio of systolic and diastolic pressures. Then, the bilateral differences in the time constant and duty ratio are used to separate the normal condition from PAD. The machine learning decision-making process utilises a screening method to automatically detect subjects with and without the risk of PAD. The radial-based function is employed to parameterise the similarity and dissimilarity levels using probability values. Colour relation analysis incorporates the probability values into the perceptual colour relationships for PAD screening. The experimental results indicate that in comparison with bilateral timing parameters, degree of stenosis, and resistive index, the proposed screening method is efficient in preventing complications of PAD and is easily implemented in an embedded system.

References

    1. 1)
      • 1. O'Hare, A., Johansen, K.: ‘Lower-extremity peripheral arterial disease among patients with end-stage renal disease’, J. Am. Soc. Nephrol., 2001, 12, p. 2838.
    2. 2)
      • 2. O'Hare, A.M., Johansen, K.L.: ‘Peripheral vascular disease in end-stage renal disease patients’, Int. J. Artif. Organs, 2002, 25, p. 1123.
    3. 3)
      • 3. Tian, S.L., Murphy, M., Han, Q.F., et al: ‘Prevalence and risk factors for peripheral artery disease among patients on maintenance peritoneal dialysis’, Blood Purif., 2010, 30, pp. 5055.
    4. 4)
      • 4. Lee, C.C., Wu, C.J., Chou, L.H., et al: ‘Peripheral artery disease in peritoneal dialysis and hemodialysis patients: single-center retrospective study in Taiwan’, BMC Nephrol., 2012, 13, (100), pp. 18.
    5. 5)
      • 5. Lin, M.S., Hsu, K.Y., Chen, Y.J., et al: ‘Prevalence and risk factors of asymptomatic peripheral arterial disease in patients with COPD in Taiwan’, PLoS ONE, 2013, 8, (5), pp. 16.
    6. 6)
      • 6. Tordoir, J.H.M., Dammers, R., Sande, F.M.: ‘Upper extremity ischemia and hemodialysis vascular access’, Eur. J. Vasc. Endovasc. Surg., 2004, 27, pp. 15.
    7. 7)
      • 7. Leon, C., Asif, A.: ‘Arteriovenous access and hand pain: the distal hypoperfusion ischemic syndrome’, Clin. J. Am. Soc. Nephrol., 2007, 2, (1), pp. 175183.
    8. 8)
      • 8. Wu, J.X., Chen, G.C., Wu, M.J., et al: ‘Bilateral photoplethysmography for arterial steal detection in arteriovenous fistula using a fractional-order decision-making quantizer’, Med. Biol. Eng. Comput., 2017, 55, (2), pp. 257270.
    9. 9)
      • 9. Manos, T.A., Sokolis, D.P., Giagini, A.T., et al: ‘Local hemodynamics and intimal hyperplasia at the venous side of a porcine arteriovenous shunt’, IEEE Trans. Inf. Technol. Biomed., 2010, 14, (3), pp. 681690.
    10. 10)
      • 10. Shen, C.C., Lin, C.H.: ‘Chirp-encoded excitation for dual-frequency ultrasound tissue harmonic imaging’, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 2012, 59, (11), pp. 24202430.
    11. 11)
      • 11. Lin, C.H., Kan, C.D., Chen, W.L., et al: ‘An equivalent astable multivibrator model to assess flow instability and dysfunction risk in in-vitro stenotic arteriovenous grafts’, Technol. Health Care, 2016, 24, pp. 295308.
    12. 12)
      • 12. Qiu, W., Yu, Y., Tsang, F.K., et al: ‘An FPGA- based open platform for ultrasound biomicroscopy’, IEEE Trans. Ultrason. Ferroelect., Freq., Control, 2012, 59, (7), pp. 14321442.
    13. 13)
      • 13. Xu, X., Yen, J.T., Shung, K.K.: ‘A low-cost bipolar pulse generator for high-frequency ultrasound imaging’, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2007, 54, (2), pp. 443447.
    14. 14)
      • 14. Nguyen, L.C., Yu, F.T.H., Cloutier, G.: ‘Cyclic changes in blood echogenicity under pulsatile flow are frequency dependent’, Ulrasound Med. Biol., 2008, 34, (4), pp. 664673.
    15. 15)
      • 15. Wu, J.X., Li, C.M., Ho, Y.R., et al: ‘Bilateral photoplethysmography analysis for peripheral arterial stenosis screening with a fractional-order integrator and info-gap decision- making’, IEEE Sens. J., 2016, 16, (8), pp. 26912700.
    16. 16)
      • 16. Jayasree, V.K., Sandhya, T.V., Radhakrishnan, P.: ‘Non-invasive studies on age related parameters using a blood volume pulse sensor’, Meas. Sci. Rev., 2008, 8, (4), pp. 8286.
    17. 17)
      • 17. Allen, J., Oates, C.P., Lees, T.A., et al: ‘Photo-plethysmography detection of lower limb peripheral arterial occlusive disease: a comparison of pulse timing, amplitude and shape characteristics’, Physiol. Meas., 2005, 26, pp. 811821.
    18. 18)
      • 18. Allen, J.: ‘Photoplethysmography and its application in clinical physiological measurement’, Physiol. Meas., 2007, 28, (3), pp. R139.
    19. 19)
      • 19. Yousef, Q., Reaz, M.B.I., Ali, M.A.M.: ‘The analysis of PPG morphology: investigating the effects of aging on arterial compliance’, Meas. Sci. Rev., 2012, 12, (6), pp. 266271.
    20. 20)
      • 20. Rubins, U., Grube, J., Kukulis, I.: ‘Photoplethsmography analysis of artery properties in patients with cardiovascular diseases’. 14th Nordic-Baltic Conf. on Biomedical Engineering and Medical Physics, Riga, Latvia, June 2008, pp. 319322.
    21. 21)
      • 21. Wu, J.X., Li, C.M., Chen, G.C., et al: ‘Peripheral arterial disease screening for hemodialysis patients using a fractional-order integrator and transition probability decision-making model’, IET Syst. Biol., 2017, 11, (2), pp. 6976.
    22. 22)
      • 22. Tozzi, P., Corno, A., Hayoz, D.: ‘Definition of arterial compliance’, Am. J. Physiol. Heart Circ. Physiol., 2000, 278, (4), p. H1407.
    23. 23)
      • 23. Cohn, J.: ‘Arterial compliance to stratify cardiovascular risk: more precision in therapeutic decision making, ‘Am. J. Hypertens., 2001, 14, (8), p. S258.
    24. 24)
      • 24. Chen, W.L., Lin, Y.H., Kan, C.D., et al: ‘Assessment of flow instabilities in in-vitro stenotic arteriovenous grafts using an equivalent astable multivibrator’, IET Sci. Meas. Technol., 2015, 9, (6), pp. 709716.
    25. 25)
      • 25. Fish, P.: ‘Physics and instrumentation of diagnostic medical ultrasound’ (Joon Wiley & Sons Ltd., USA), ISBN 0-471-92651-5.
    26. 26)
      • 26. Chen, W.L., Kan, C.D., Lin, C.H.: ‘Assessment of inflow and outflow stenoses using big spectral data and radial-based color relation analysis on in vitro arteriovenous graft biophysical experimental model’, IET Cyber-Physical Syst. Theory Appl., 2017, 2, (1), pp. 1019.
    27. 27)
      • 27. Alpaydin, E.: ‘Introduction to machine learning-from adaptive computation and machine learning’ (The MIT Press, London, 2010).
    28. 28)
      • 28. Bridge, J.P., Holden, S.B., Paulson, L.C.: ‘Machine learning for first-order theorem proving’, J. Autom. Reasoning, 2014, 53, (2), pp. 141172.
    29. 29)
      • 29. Sarikaya, R., Hinton, G.E., Deoras, A.: ‘Application of deep belief networks for neural language understanding’, IEEE/ACM Trans. Audio, Speech Lang. Process., 2014, 22, (4), pp. 778784.
    30. 30)
      • 30. Doering, E.: ‘NI myRIO-project essentials guide’ (National Technology and Science Press, USA, 2014).
    31. 31)
      • 31. Allen, J., Overbeck, K., Nath, A.F., et al: ‘A prospective comparison of bilateral photoplethy-smography versus the ankle-brachial pressure index for detecting and quantifying lower limb peripheral arterial disease’, J. Vasc. Surg., 2008, 47, pp. 794802.
    32. 32)
      • 32. Nitzan, M., Khonokh, B., Slovik, Y.: ‘The difference in pulse transit time to the toe and figure measured by photo-plethysmography’, Physiol. Meas., 2002, 23, pp. 8593.
    33. 33)
      • 33. Lim, P.S., Jeng, Y., Wu, M.Y., et al: ‘Role of cilostazol therapy in hemodialysis patients with asymptomatic peripheral arterial disease: a retrospective cohort study’, BioMed Res. Int., 2016, 2016, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5330
Loading

Related content

content/journals/10.1049/iet-smt.2018.5330
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address