http://iet.metastore.ingenta.com
1887

Robust estimation of voltage harmonics in a single-phase system

Robust estimation of voltage harmonics in a single-phase system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A frequency adaptive technique relying on a linear Kalman filter (KF) is presented here for robust estimation of voltage harmonics under variable frequency conditions in a single-phase system. A relatively simple frequency-locked loop (FLL) is combined with the linear KF (LKF-FLL) to achieve frequency adaptive ability and avoid the use of a non-linear KF. In contrast to the non-linear extended KF (EKF), the LKF-FLL technique has several advantages such as robustness, linearity, simple tuning, having fewer states, requiring no derivative actions, while offering low complexity, excellent convergence, and computational efficiency. When compared to the non-linear extended real KF, it can generate a faster dynamic response and more accurate steady-state estimation of the harmonics under frequency variations. It can also provide an improved estimation for off-nominal frequency conditions when compared to the discrete Fourier transform (DFT) method. The effectiveness of the technique is verified by various simulated and real-time experimental case studies.

References

    1. 1)
      • 1. Lamich, M., Balcells, J., Corbalán, M., et al: ‘Nonlinear loads model for harmonics flow prediction, using multivariate regression’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 48204827.
    2. 2)
      • 2. Mayordomo, J.G., Beites, L.F., Carbonero, Á., et al: ‘An analytical procedure for calculating harmonics of three-phase uncontrolled rectifiers under nonideal conditions’, IEEE Trans. Power Del., 2015, 30, (1), pp. 144152.
    3. 3)
      • 3. Askarian, I., Eren, S., Pahlevani, M., et al: ‘Digital real-time harmonic estimator for power converters in future micro-grids’, IEEE Trans. Smart Grid, 2017, 9, (6), pp. 11.
    4. 4)
      • 4. He, J., Li, Y.W., Wang, R., et al: ‘A measurement method to solve a problem of using DG interfacing converters for selective load harmonic filtering’, IEEE Trans. Power Elect., 2016, 31, (3), pp. 18521856.
    5. 5)
      • 5. Elrayyah, A., Safayet, A., Sozer, Y., et al: ‘Efficient harmonic and phase estimator for single phase grid-connected renewable energy systems’, IEEE Trans. Ind. Appl., 2013, 50, (1), pp. 620630.
    6. 6)
      • 6. Shuai, Z., Zhang, J., Tang, L., et al: ‘Frequency shifting and filtering algorithm for power system harmonic estimation’, IEEE Trans. Ind. Inf., 2018, pp. 11.
    7. 7)
      • 7. Wang, Y., Yong, J., Sun, Y., et al: ‘Characteristics of harmonic distortions in residential distribution systems’, IEEE Trans. Power Del., 2016, 32, (3), pp. 14951504.
    8. 8)
      • 8. Jain, S.K.: ‘Algorithm for dealing with time-varying signal within sliding-window for harmonics estimation’, IET Sci. Meas. Technol., 2015, 9, (8), pp. 10231031.
    9. 9)
      • 9. Subudhi, U., Sahoo, H.K., Mishra, S.K.: ‘Harmonics and decaying DC estimation using volterra LMS/F algorithm’, IEEE Trans. Ind. Appl., 2018, 54, (2), pp. 11081118.
    10. 10)
      • 10. Tan, Y., Chen, R., Wang, M., et al: ‘High-accurate estimation method of sub-synchronous and super-synchronous harmonic parameters on PMU’, The J. Eng., 2017, 2017, (13), pp. 12751279.
    11. 11)
      • 11. Bagheri, P., Xu, W., Ding, T.: ‘A distributed filtering scheme to mitigate harmonics in residential distribution systems’, IEEE Trans. Power Del., 2016, 31, (2), pp. 648656.
    12. 12)
      • 12. Liu, H., Hu, H., Chen, H., et al: ‘Fast and flexible selective harmonic extraction methods based on the generalized discrete Fourier transform’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 34843496.
    13. 13)
      • 13. Wen, H., Zhang, J., Meng, Z., et al: ‘Harmonic estimation using symmetrical interpolation FFT based on triangular self-convolution window’, IEEE Trans. Ind. Inf., 2015, 11, (1), pp. 1626.
    14. 14)
      • 14. Zygarlicki, J., Zygarlicka, M., Mroczka, J., et al: ‘A reduced prony's method in power-quality analysis-parameters selection’, IEEE Trans. Power Del., 2010, 25, (2), pp. 979986.
    15. 15)
      • 15. Chen, C.-I., Chen, Y.-C.: ‘Comparative study of harmonic and interharmonic estimation methods for stationary and time-varying signals’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 397404.
    16. 16)
      • 16. Tiwari, V.K., Umarikar, A.C., Jain, T.: ‘Fast amplitude estimation of harmonics using undecimated wavelet packet transform and its hardware implementation’, IEEE Trans. Instrum. Meas., 2018, 67, (1), pp. 6577.
    17. 17)
      • 17. Tiwari, V.K., Jain, S.K.: ‘Hardware implementation of polyphase-decomposition-based wavelet filters for power system harmonics estimation’, IEEE Trans. Instrum. Meas., 2016, 65, (7), pp. 15851595.
    18. 18)
      • 18. Sadinezhad, I., Agelidis, V.G.: ‘Slow sampling online optimization approach to estimate power system frequency’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 265277.
    19. 19)
      • 19. Terzija, V.V.: ‘Improved recursive Newton-type algorithm for frequency and spectra estimation in power systems’, IEEE Trans. Instrum. Measur., 2003, 52, (5), pp. 16541659.
    20. 20)
      • 20. Chudamani, R., Vasudevan, K., Ramalingam, C.S.: ‘Real-time estimation of power system frequency using nonlinear least squares’, IEEE Trans. Power Del., 2009, 24, (3), pp. 10211028.
    21. 21)
      • 21. Goh, Z.P., Radzi, M.A.M., Thien, Y.V., et al: ‘Hybrid FFT-ADALINE algorithm with fast estimation of harmonics in power system’, IET Signal Process., 2016, 10, (8), pp. 855864.
    22. 22)
      • 22. Rodriguez, P., Luna, A., Candela, I., et al: ‘Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions’, IEEE Trans. Ind. Elect., 2011, 58, (1), pp. 127138.
    23. 23)
      • 23. Girgis, A.A.: ‘A new Kalman filtering based digital distance relay’, IEEE Trans. Power Appar. Sys., 1982, PAS-101, (9), pp. 34713480.
    24. 24)
      • 24. Girgis, A.A., Chang, W.B., Makram, E.B.: ‘A digital recursive measurement scheme for online tracking of power system harmonics’, IEEE Trans. Power Del., 1991, 6, (3), pp. 11531160.
    25. 25)
      • 25. Reza, M.S., Ciobotaru, M., Agelidis, V.G.: ‘Instantaneous power quality analysis using frequency adaptive Kalman filter technique’. Proc. of IEEE 7th Int. Power Elect. Motion Cont. Conf. (IPEMC)-ECCE, Harbin, China, 2012, pp. 8187.
    26. 26)
      • 26. Girgis, A.A., Peterson, W.L.: ‘Adaptive estimation of power system frequency deviation and its rate of change for calculating sudden power system overloads’, IEEE Trans. Power Del., 1990, 5, (2), pp. 585594.
    27. 27)
      • 27. Routray, A., Pradhan, A.K., Rao, K.P.: ‘A novel Kalman filter for frequency estimation of distorted signals in power systems’, IEEE Trans. Instrum. Meas., 2002, 51, (3), pp. 469479.
    28. 28)
      • 28. Kennedy, K., Lightbody, G., Yacamini, R.: ‘Power system harmonic analysis using the Kalman filter’. Proc. of IEEE Power Engg. Soc. Gen. Meet., Toronto, Canada, 2003, pp. 752757.
    29. 29)
      • 29. Chen, C.I., Chang, G.W., Hong, R.C., et al: ‘Extended real model of Kalman filter for time-varying harmonics estimation’, IEEE Trans. Power Del., 2010, 25, (1), pp. 1726.
    30. 30)
      • 30. Ray, P.K., Subudhi, B.: ‘Ensemble-Kalman-filter-based power system harmonic estimation’, IEEE Trans. Instrum. Measur., 2012, 61, (12), pp. 32163224.
    31. 31)
      • 31. Dash, P.K., Jena, R.K., Panda, G., et al: ‘An extended complex Kalman filter for frequency measurement of distorted signals’, IEEE Trans. Instrum. Meas., 2000, 49, (4), pp. 746753.
    32. 32)
      • 32. Chien-Hung, H., Chien-Hsing, L., Kuang-Jung, S., et al: ‘Frequency estimation of distorted power system signals using a robust algorithm’, IEEE Trans. Power Del., 2008, 23, (1), pp. 4151.
    33. 33)
      • 33. Chien-Hung, H., Chien-Hsing, L., Kuang-Jung, S., et al: ‘A robust technique for frequency estimation of distorted signals in power systems’, IEEE Trans. Instrum. Meas., 2010, 59, (8), pp. 20262036.
    34. 34)
      • 34. Enayati, J., Moravej, Z.: ‘Real-time harmonics estimation in power systems using a novel hybrid algorithm’, IET Gener. Transm. Distrib., 2017, 11, (14), pp. 35323538.
    35. 35)
      • 35. La Scala, B.F., Bitmead, R.R.: ‘Design of an extended Kalman filter frequency tracker’, IEEE Trans. Signal Proc., 1996, 44, (3), pp. 739742.
    36. 36)
      • 36. Benmouyal, G.: ‘Frequency-domain characterization of Kalman filters as applied to power system protection’, IEEE Trans. Power Del., 1992, 7, (3), pp. 11291138.
    37. 37)
      • 37. Bittanti, S., Savaresi, S.M.: ‘On the parameterization and design of an extended Kalman filter frequency tracker’, IEEE Trans. Autom. Cont., 2000, 45, (9), pp. 17181724.
    38. 38)
      • 38. Reza, M.S., Ciobotaru, M., Agelidis, V.G.: ‘Accurate estimation of single-pphase grid voltage fundamental amplitude and frequency by using a frequency adaptive linear Kalman filter’, IEEE J. Emerg. Selec. Topics Power Elect., 2016, 4, (4), pp. 12261235.
    39. 39)
      • 39. Pérez, E., Barros, J.: ‘An extended Kalman filtering approach for detection and analysis of voltage dips in power systems’, Electr. Power Syst. Res., 2008, 78, (4), pp. 618625.
    40. 40)
      • 40. Al-Hamadi, H.M., Soliman, S.A.: ‘Kalman filter for identification of power system fuzzy harmonic components’, Electr. Power Syst. Res., 2002, 62, (3), pp. 241248.
    41. 41)
      • 41. Rauh, A., Ehret, J., Aschemann, H.: ‘Observer-based real-time frequency analysis for combustion engine-based power trains with applications to identification and control’. 19th Intern. Conf. on Methods and Models in Autom. and Robotics, Miȩdzyzdroje, Poland, 2014, pp. 332337.
    42. 42)
      • 42. Rauh, A., Tiede, S., Klenke, C.: ‘Comparison of different filter approaches for the online frequency analysis of speech signals’. 22nd Intern. Conf. on Methods and Models in Autom. and Robotics, Miȩdzyzdroje, Poland, 2017, pp. 605610.
    43. 43)
      • 43. Rauh, A., Schmidt, M., Tiede, S., et al: ‘Stochastic filter techniques in combination with sliding mode differentiators as the basis for a reliable neural network-based recongnition of phonemes in speech signals’. European Control Conf. (ECC), Limassol, Cyprus, 2018.
    44. 44)
      • 44. Asiminoaei, L., Blaabjerg, F., Hansen, S.: ‘Detection is key – harmonic detection methods for active power filter applications’, IEEE Ind. App. Mag., 2007, 13, (2), pp. 2233.
    45. 45)
      • 45. Sadinezhad, I., Agelidis, V.G.: ‘Frequency adaptive least-squares-Kalman technique for real-time voltage envelope and flicker estimation’, IEEE Trans. Ind. Electron., 2012, 59, (8), pp. 33303341.
    46. 46)
      • 46. Shaw, S.R., Laughman, C.R.: ‘A Kalman-filter spectral envelope preprocessor’, IEEE Trans. Instrum. Meas., 2007, 56, (5), pp. 20102017.
    47. 47)
      • 47. Macias, J.A.R., Exposito, A.G.: ‘Self-tuning of Kalman filters for harmonic computation’, IEEE Trans. Power Del., 2006, 21, (1), pp. 501503.
    48. 48)
      • 48. IEC Standard 61000-4-30: ‘Testing and measurement techniques – power quality measurement methods’. 2003.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5323
Loading

Related content

content/journals/10.1049/iet-smt.2018.5323
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address