Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Influence of contacts’ orientation on the AMF distribution in inter-contact gaps of VCBs

An axial magnetic field (AMF) plays an important role in the process of vacuum arc stabilisation during the current breaking process in the vacuum circuit breakers (VCBs) of the AMF type. To minimise the contacts erosion special attention should be paid to reach a possibly high value of the AMF density (between contact plates), especially in the outer electrode region. Various contact geometries are patented all over the world to improve the AMF distribution. Nevertheless, there is an issue which is not raised in the literature as yet. It is the mutual orientation (rotation) of the moving and fixed contacts. This orientation can have an influence on the AMF distribution. The above problem is analysed here numerically using Maxwell (ANSYS) software package based on the finite element method. The own (patented) contact design is considered in the analysis mentioned. However, the beneficial influence of AMF on the arc behaviour is well known for VCB designers, the explanation of this phenomenon is described (in the literature) rather seldom and very cursorily. Therefore, a simplified model accounting for the role of AMF in vacuum arc diffusion is shortly presented at the beginning of this study.

References

    1. 1)
      • 14. Chaly, A.M., Logatchev, A.A., Tarkov, R.A., et al: ‘Optical investigation of plasma jet of vacuum-arc cathode spots’, IEEE Trans. Plasma Sci., 2009, 37, (8), pp. 14261432.
    2. 2)
      • 15. Krasuski, K., Sibilski, H., Błażejczyk, T.: ‘Investigation of the magnetic field distribution between the vacuum chamber contacts’. Fourth Int. Conf. High Voltage Engineering and Applications, Poznań, 8–11 September, 2014.
    3. 3)
      • 11. Chaly, A.M., Logatchev, A.A., Shkol'nik, S.M., et al: ‘Current density on the cathode of high current vacuum arc stabilized by axial magnetic field’. IEEE XIX Int. Symp. Discharges and Electrical Insulation in Vacuum (ISDEIV), Xian, China, 2000, pp. 286289.
    4. 4)
      • 20. Brebbia, C.A., Telles, J.C.F, Wrobel, L.C.: ‘Boundary element techniques’ (Springer, Berlin, Heidelberg, New York, 1984).
    5. 5)
      • 16. Wang, L., Hu, L., Deng, J., et al: ‘Experimental investigation on vacuum arc behaviors subjected to larger diameter cup-shaped and coil-shaped axial magnetic field electrode’, IEEE Trans. Plasma Sci., 2015, 43, (3), pp. 884890.
    6. 6)
      • 25. Liu, Z., Cheng, S., Zhang, X., et al: ‘An interrupting capacity model of axial magnetic field vacuum interrupters with slot type contacts’. XXIInd Int. Symp. Discharges and Electrical Insulation in Vacuum (ISDEIV), Matsue, 2006, B4-P03, pp. 297300.
    7. 7)
      • 21. Krajewski, W.: ‘BEM analysis of 3D EMC problem with consideration of eddy-current effects’, IEE Proc., Sci. Meas. Technol., 2006, 153, (3), pp. 101107.
    8. 8)
      • 17. ANSYS Maxwell: http://www.ansys.com/products/electronics/ansys-maxwell, accessed October 2018.
    9. 9)
      • 5. Matsui, Y., Takebuchi, H., Nishijima, A.: ‘Contact for vacuum interrupter and vacuum interrupter using the contact’. US Patent No.: 6,740,838 B2, 25 May 2004.
    10. 10)
      • 2. Watzke, F.: ‘Contact piece for an electric vacuum switch’. US Patent No.: 4,390,662, 28 June 1983.
    11. 11)
      • 8. Jadidian, J.: ‘Multiphysics simulation of high-current vacuum arc in intense pulsed axial magnetic field’. Proc. COMSOL Conf., Boston, 2010.
    12. 12)
      • 6. Nishijima, A., Takebuchi, H., Matsui, Y., et al: ‘Contact for vacuum interrupter, and vacuum interrupter using same’. US Patent No.: 6,870,118 B2, 22 March 2005.
    13. 13)
      • 19. Krasuski, K.: ‘Vacuum chamber contact for electric circuit breaker’. Polish Patent No. 226244, Urząd Patentowy Rzeczpospolitej Polskiej (Patent Office of the Republic of Poland), 20.07.2017, duration since: 11.03.2015.
    14. 14)
      • 1. Hundstad, R.L.: ‘Vacuum type circuit interrupter having improved contacts’. US Patent No.: 3,836,7403, 17 September 1974.
    15. 15)
      • 7. Slade, P.: ‘The vacuum interrupter contact’, IEEE Trans. CHMT, 1984, CHMT-7, pp. 2532.
    16. 16)
      • 23. Fenski, B., Lindmayer, M., Heimbach, M., et al: ‘Characteristics of a vacuum switching contact based on bipolar axial magnetic field’. IEEE 18th Int. Symp. Discharges and Electrical Insulation in Vacuum (ISDEIV), Eindhoven, 1998, pp. 459462.
    17. 17)
      • 9. Slade, P.G.: ‘The vacuum interrupter (theory, design, and application)’ (CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2008).
    18. 18)
      • 10. Feng, D., Xiu, S., Wang, Y., et al: ‘Investigation of arc ignition modes for drawn vacuum arc with axial magnetic field (AMF)’. XXVIIth Int. Symp. Discharges and Electrical Insulation in Vacuum, Suzhou, 2016.
    19. 19)
      • 3. Zükler, K.: ‘Contact arrangement for a vacuum switch’. US Patent No.:4,667,070, 19 May 1987.
    20. 20)
      • 18. Zienkiewicz, O.C.: ‘The finite element in engineering science’ (McGraw-Hill, New York, 1971).
    21. 21)
      • 24. Fenski, B., Heimbach, M., Shang, W.: ‘The influence of unipolar axial magnetic field on the behaviour of vacuum arcs’. IEEE XIXth Int. Symp. Discharges and Electrical Insulation in Vacuum (ISDEIV), Xian, China, 2000, pp. 451454.
    22. 22)
      • 22. Fink, H., Heimbach, M., Shang, W.: ‘A new contact design based on a quadrupolar axial magnetic field and its characteristics’, Eur. Trans. Electr. Power (ETEP), 2000, 10, (2), pp. 7580.
    23. 23)
      • 4. Itoh, T., Ohkura, T., Takami, T.: ‘Vacuum type circuit interrupter with axial magnetic field’. UK Patent No.: 1,258,015, December 1971.
    24. 24)
      • 13. Chaly, A.M., Logatchev, A.A., Zabello, K.K., et al: ‘High-current vacuum arc in a strong axial magnetic field’. IEEE XXIInd Int. Symp. Discharges and Electrical Insulation in Vacuum (ISDEIV), Matsue, 2006, pp. 309312.
    25. 25)
      • 12. Chaly, A.M.: ‘Magnetic control of high current vacuum arcs with the aid of an axial magnetic field: a review’, IEEE Trans. Plasma Sci., 2005, 33, (5), pp. 14971503.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5269
Loading

Related content

content/journals/10.1049/iet-smt.2018.5269
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address