access icon free Fast corona discharge solver for precipitators using multi-grid methods on fine grids

A novel approach for modelling the corona problem in the wire-duct precipitators using the finite difference technique integrated with multi-grid methods is adopted in this study. The multi-grid method is applied as a fast convergent iterative solution for the finite difference technique to solve Poisson equation especially on finer grids. Two schemes of the multi-grid method, mainly the V-cycle and the full multi-grid method, are adopted in the present study. Compared with Gauss–Seidel method, the above-mentioned schemes are successfully transcendent owing to timing performance. By using finer grids, the proposed algorithm allows to get a more accurate picture about the performance of the precipitators in the design stage without suffering from the excessive computational time. Accurate results for the potential and current density computations, closed to the previous published experimental measurements, are obtained in comparison with earlier numerical techniques for several design parameters of the precipitators. Finally, the effect of changing the effective ion mobility and the surface roughness factor on the voltage–current density is considered.

Inspec keywords: iterative methods; Poisson equation; corona; current density; finite difference methods; electrostatic precipitators

Other keywords: surface roughness; fast corona discharge solver; finer grid method; voltage-current density computations; finite difference technique; numerical techniques; fast convergent iterative solution; wire-duct precipitators; Gauss-Seidel method; full multigrid method; Poisson equation

Subjects: Differential equations (numerical analysis); Electrostatic devices; Interpolation and function approximation (numerical analysis); Gaseous insulation, breakdown and discharges

References

    1. 1)
      • 4. Parker, K.: ‘Electrical operation of electrostatic precipitators’, IET, 2003.
    2. 2)
      • 14. Elmoursi, A.A., Castle, G.P.: ‘Modeling of corona characteristics in a wire-duct precipitator using the charge simulation technique’, IEEE Trans. Ind. Appl., 1987, 1, pp. 95102.
    3. 3)
      • 19. Long, Z., Yao, Q., Song, Q., et al: ‘A second-order accurate finite volume method for the computation of electrical conditions inside a wire-plate electrostatic precipitator on unstructured meshes’, J. Electrostat., 2009, 67, (4), pp. 597604.
    4. 4)
      • 3. Haldar, S.K.: ‘Environmental system management of mineral resources and sustainable development’, in ‘Mineral exploration principles and applications’ (2013), pp. 267285.
    5. 5)
      • 15. Al-Hamouz, Z., El-Hamouz, A., Abuzaid, N.: ‘Simulation and experimental studies of corona power loss in a dust loaded wire-duct electrostatic precipitator’, Adv. Powder Technol., 2011, 22, (6), pp. 706714.
    6. 6)
      • 1. Muralikrishna, I.V., Manickam, V.: ‘Air pollution control technologies’, in ‘Environmental management science and engineering for industry’ (2017), pp. 337397.
    7. 7)
      • 21. Faiz, J., Ojaghi, M.: ‘Instructive review of computation of electric fields using different numerical techniques’, Int. J. Eng. Educ., 2002, 18, (3), pp. 344365.
    8. 8)
      • 9. McDonald, J.R., Smith, W.B., Spencer III, H.W., et al: ‘A mathematical model for calculating electrical conditions in wire-duct electrostatic precipitation devices’, J. Appl. Phys., 1977, 48, (6), pp. 22312243.
    9. 9)
      • 26. Tassicker, O.J.: ‘Measurement of corona current density at an electrode boundary’, Electron. Lett., 1969, 13, (5), pp. 285286.
    10. 10)
      • 27. Felici, N.J.: ‘Recent advances in the analysis of the dc ionized fields-part II’, Dir. Curr., 1963, 8, pp. 278287.
    11. 11)
      • 2. Vallero, D.: ‘Air pollution control technologies’, in ‘Fundamentals of air pollution’ (2014, 5th edn.), pp. 829879.
    12. 12)
      • 18. Neimarlija, N., Demirdžić, I., Muzaferija, S.: ‘Finite volume method for calculation of electrostatic fields in electrostatic precipitators’, J. Electrostat., 2009, 67, (1), pp. 3747.
    13. 13)
      • 8. Lei, H., Wang, L.-Z., Wu, Z.-N.: ‘Applications of upwind and downwind schemes for calculating electrical conditions in a wire–plate electrostatic precipitator’, J. Comput. Phys., 2004, 193, (2), pp. 697707.
    14. 14)
      • 23. Guillet, T., Teyssier, R.: ‘A simple multigrid scheme for solving the Poisson equation with arbitrary domain boundaries’, J. Comput. Phys., 2011, 230, (12), pp. 47564771.
    15. 15)
      • 5. Tsadilas, C.D., Evangelou, E.: Coal fly ash utilization for boron management in soils, plants, and waters, Environmental Materials and Waste, 2016, pp. 647663.
    16. 16)
      • 16. Al-Hamouz, Z.M.: ‘A combined algorithm based on finite elements and a modified method of characteristics for the analysis of the corona in wire-duct electrostatic precipitators’, IEEE Trans. Ind. Appl., 2002, 38, (1), pp. 4349.
    17. 17)
      • 7. Ahern, N.: ‘Mercury in gold processing’, in ‘Gold ore processing’ (2016, 2nd edn.), pp. 753766.
    18. 18)
      • 11. Adamiak, K.: ‘Simulation of corona in wire-duct electrostatic precipitator by means of the boundary element method’, IEEE Trans. Ind. Appl., 1994, 30, (2), pp. 381386.
    19. 19)
      • 24. Gibou, F., Fedkiw, R.P., Cheng, L.T., et al: ‘A second-order-accurate symmetric discretization of the Poisson equation on irregular domains’, J. Comput. Phys., 2002, 176, (1), pp. 205227.
    20. 20)
      • 12. Rajanikanth, B.S., Thirumaran, N.: ‘Prediction of pre-breakdown V–I characteristics of an electrostatic precipitator using a combined boundary element-finite difference approach’, Fuel Process. Technol., 2002, 76, (3), pp. 159186.
    21. 21)
      • 6. Hammerschmidt, J., Güntner, J., Kerstiens, B., et al: ‘Roasting of gold ore in the circulating fluidized-bed technology’, in ‘Gold ore processing’ (2016, 2nd edn.), pp. 393409.
    22. 22)
      • 13. Abdel-Salam, M., Eid, A.: ‘Finite element simulation of corona in wire-duct precipitators’. Industry Applications Conf. 37th IAS Annual Meeting, USA, 2002..
    23. 23)
      • 25. Penney, G.W., Matick, R.E.: ‘Potentials in DC corona fields’, Trans. Am. Inst. Electr. Eng. Part I: Commun. Electron., 1960, 79, (2), pp. 9199.
    24. 24)
      • 20. Beasley, M.D.R., Pickles, J.H., Gallet, G., et al: ‘Comparative study of three methods for computing electric fields’, Proc. Inst. Electr. Eng., 1979, 126, (1), pp. 126134..
    25. 25)
      • 22. Briggs, W.L., McCormick, S.F.: ‘A multigrid tutorial’ (Society for Industrial Mathematics, Philadelphia, 2000), vol. 72.
    26. 26)
      • 17. Davis, J.L., Hoburg, J.F.: ‘Wire-duct precipitator field and charge computation using finite element and characteristics methods’, J. Electrostat., 1983, 14, (2), pp. 187199.
    27. 27)
      • 10. Kallio, G.A., Stock, D.E.: ‘Computation of electrical conditions inside wireduct electrostatic precipitators using a combined finite-element, finite-difference technique’, J. Appl. Phys., 1986, 59, (6), pp. 17991806.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5243
Loading

Related content

content/journals/10.1049/iet-smt.2018.5243
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading