http://iet.metastore.ingenta.com
1887

Fast corona discharge solver for precipitators using multi-grid methods on fine grids

Fast corona discharge solver for precipitators using multi-grid methods on fine grids

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A novel approach for modelling the corona problem in the wire-duct precipitators using the finite difference technique integrated with multi-grid methods is adopted in this study. The multi-grid method is applied as a fast convergent iterative solution for the finite difference technique to solve Poisson equation especially on finer grids. Two schemes of the multi-grid method, mainly the V-cycle and the full multi-grid method, are adopted in the present study. Compared with Gauss–Seidel method, the above-mentioned schemes are successfully transcendent owing to timing performance. By using finer grids, the proposed algorithm allows to get a more accurate picture about the performance of the precipitators in the design stage without suffering from the excessive computational time. Accurate results for the potential and current density computations, closed to the previous published experimental measurements, are obtained in comparison with earlier numerical techniques for several design parameters of the precipitators. Finally, the effect of changing the effective ion mobility and the surface roughness factor on the voltage–current density is considered.

References

    1. 1)
      • 1. Muralikrishna, I.V., Manickam, V.: ‘Air pollution control technologies’, in ‘Environmental management science and engineering for industry’ (2017), pp. 337397.
    2. 2)
      • 2. Vallero, D.: ‘Air pollution control technologies’, in ‘Fundamentals of air pollution’ (2014, 5th edn.), pp. 829879.
    3. 3)
      • 3. Haldar, S.K.: ‘Environmental system management of mineral resources and sustainable development’, in ‘Mineral exploration principles and applications’ (2013), pp. 267285.
    4. 4)
      • 4. Parker, K.: ‘Electrical operation of electrostatic precipitators’, IET, 2003.
    5. 5)
      • 5. Tsadilas, C.D., Evangelou, E.: Coal fly ash utilization for boron management in soils, plants, and waters, Environmental Materials and Waste, 2016, pp. 647663.
    6. 6)
      • 6. Hammerschmidt, J., Güntner, J., Kerstiens, B., et al: ‘Roasting of gold ore in the circulating fluidized-bed technology’, in ‘Gold ore processing’ (2016, 2nd edn.), pp. 393409.
    7. 7)
      • 7. Ahern, N.: ‘Mercury in gold processing’, in ‘Gold ore processing’ (2016, 2nd edn.), pp. 753766.
    8. 8)
      • 8. Lei, H., Wang, L.-Z., Wu, Z.-N.: ‘Applications of upwind and downwind schemes for calculating electrical conditions in a wire–plate electrostatic precipitator’, J. Comput. Phys., 2004, 193, (2), pp. 697707.
    9. 9)
      • 9. McDonald, J.R., Smith, W.B., Spencer III, H.W., et al: ‘A mathematical model for calculating electrical conditions in wire-duct electrostatic precipitation devices’, J. Appl. Phys., 1977, 48, (6), pp. 22312243.
    10. 10)
      • 10. Kallio, G.A., Stock, D.E.: ‘Computation of electrical conditions inside wireduct electrostatic precipitators using a combined finite-element, finite-difference technique’, J. Appl. Phys., 1986, 59, (6), pp. 17991806.
    11. 11)
      • 11. Adamiak, K.: ‘Simulation of corona in wire-duct electrostatic precipitator by means of the boundary element method’, IEEE Trans. Ind. Appl., 1994, 30, (2), pp. 381386.
    12. 12)
      • 12. Rajanikanth, B.S., Thirumaran, N.: ‘Prediction of pre-breakdown V–I characteristics of an electrostatic precipitator using a combined boundary element-finite difference approach’, Fuel Process. Technol., 2002, 76, (3), pp. 159186.
    13. 13)
      • 13. Abdel-Salam, M., Eid, A.: ‘Finite element simulation of corona in wire-duct precipitators’. Industry Applications Conf. 37th IAS Annual Meeting, USA, 2002..
    14. 14)
      • 14. Elmoursi, A.A., Castle, G.P.: ‘Modeling of corona characteristics in a wire-duct precipitator using the charge simulation technique’, IEEE Trans. Ind. Appl., 1987, 1, pp. 95102.
    15. 15)
      • 15. Al-Hamouz, Z., El-Hamouz, A., Abuzaid, N.: ‘Simulation and experimental studies of corona power loss in a dust loaded wire-duct electrostatic precipitator’, Adv. Powder Technol., 2011, 22, (6), pp. 706714.
    16. 16)
      • 16. Al-Hamouz, Z.M.: ‘A combined algorithm based on finite elements and a modified method of characteristics for the analysis of the corona in wire-duct electrostatic precipitators’, IEEE Trans. Ind. Appl., 2002, 38, (1), pp. 4349.
    17. 17)
      • 17. Davis, J.L., Hoburg, J.F.: ‘Wire-duct precipitator field and charge computation using finite element and characteristics methods’, J. Electrostat., 1983, 14, (2), pp. 187199.
    18. 18)
      • 18. Neimarlija, N., Demirdžić, I., Muzaferija, S.: ‘Finite volume method for calculation of electrostatic fields in electrostatic precipitators’, J. Electrostat., 2009, 67, (1), pp. 3747.
    19. 19)
      • 19. Long, Z., Yao, Q., Song, Q., et al: ‘A second-order accurate finite volume method for the computation of electrical conditions inside a wire-plate electrostatic precipitator on unstructured meshes’, J. Electrostat., 2009, 67, (4), pp. 597604.
    20. 20)
      • 20. Beasley, M.D.R., Pickles, J.H., Gallet, G., et al: ‘Comparative study of three methods for computing electric fields’, Proc. Inst. Electr. Eng., 1979, 126, (1), pp. 126134..
    21. 21)
      • 21. Faiz, J., Ojaghi, M.: ‘Instructive review of computation of electric fields using different numerical techniques’, Int. J. Eng. Educ., 2002, 18, (3), pp. 344365.
    22. 22)
      • 22. Briggs, W.L., McCormick, S.F.: ‘A multigrid tutorial’ (Society for Industrial Mathematics, Philadelphia, 2000), vol. 72.
    23. 23)
      • 23. Guillet, T., Teyssier, R.: ‘A simple multigrid scheme for solving the Poisson equation with arbitrary domain boundaries’, J. Comput. Phys., 2011, 230, (12), pp. 47564771.
    24. 24)
      • 24. Gibou, F., Fedkiw, R.P., Cheng, L.T., et al: ‘A second-order-accurate symmetric discretization of the Poisson equation on irregular domains’, J. Comput. Phys., 2002, 176, (1), pp. 205227.
    25. 25)
      • 25. Penney, G.W., Matick, R.E.: ‘Potentials in DC corona fields’, Trans. Am. Inst. Electr. Eng. Part I: Commun. Electron., 1960, 79, (2), pp. 9199.
    26. 26)
      • 26. Tassicker, O.J.: ‘Measurement of corona current density at an electrode boundary’, Electron. Lett., 1969, 13, (5), pp. 285286.
    27. 27)
      • 27. Felici, N.J.: ‘Recent advances in the analysis of the dc ionized fields-part II’, Dir. Curr., 1963, 8, pp. 278287.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5243
Loading

Related content

content/journals/10.1049/iet-smt.2018.5243
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address