Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Explaining anomalous forces in dielectric EM drives

The authors report some encouraging results with basis on their calculations to forecast the magnitude of anomalous thrust forces measured in resonant microwave cavities with dielectrics, for two configurations known as Cannae-Drive and Tapered Drive, when operating for high values of power. Despite of the weakness of the forces, both devices could provide us with a novel future propulsion technology by means of a thrust without ejecting propellant. In the calculations, they applied their theoretical model based on the dipole-environment interaction via generalised quantum entanglements (GQE) ensuring the momentum conservation principle. They obtain good agreement with the experimental measurements, although the anomalous forces have weak magnitude. The control and enhancement of the effect can be accomplished by applying GQE hypothesis in order to allow the future viability of a new technology based on quantum electromagnetic propulsion of aircrafts and vehicles.

References

    1. 1)
      • 35. Canning, F.X., Melcher, C., Winet, E.: ‘Asymmetrical capacitors for propulsion’. NASA/CR-2004-213312, 2004, pp. 116.
    2. 2)
      • 12. Tajmar, M., Fiedler, G.: ‘Direct thrust measurements of an EM-drive and evaluation of possible side-effects’. 51st AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Florida, USA, AIAA Paper 2015-4083, July 2015.
    3. 3)
      • 16. Porcelli, E.B., Filho, V.S.: ‘On the anomalous weight losses in high-voltage symmetrical capacitors’, arXiv:1502.06915, 2015.
    4. 4)
      • 20. Wieśniak, M., Vedral, V., Brukner, C.: ‘Magnetic susceptibility as a macroscopic entanglement witness’, New J. Phys., 2005, 7, pp. 258.
    5. 5)
      • 14. Funaki, I., Kuninaka, H., Toki, K.: ‘Plasma characterization of a 10-cm diameter microwave discharge ion thruster’, J. Propuls. Power, 2004, 20, (4), pp. 718727.
    6. 6)
      • 27. Shawyer, R.: ‘Microwave propulsion – the EMDrive programme – implications for the future of the aerospace industry’. CEAS 2009, Manchester, UK, October 2009.
    7. 7)
      • 34. Martins, A.A., Pinheiro, M.J.: ‘On the propulsive force developed by asymmetric capacitors in a vacuum’, Phys. Procedia, 2011, 20, pp. 112119.
    8. 8)
      • 37. NASA: ‘Apparatus and method for generating a thrust using a two dimensional asymmetrical capacitor module’. US Patent 6,317,310, 2001.
    9. 9)
      • 3. Juan, Y., Yu-Quan, W., Yan-Jie, M., et al: ‘Prediction and experimental measurement of the electromagnetic thrust generated by a microwave thruster system’, College of Astronautics, Northwestern Polytechnic University, Xi'an 710072, China, December 2012.
    10. 10)
      • 23. Dowling, M.R., Doherty, A.C., Bartlett, S.D.: ‘Energy as an entanglement witness for quantum many-body systems’, Phys. Rev. A, 2004, 70, pp. 062113062300.
    11. 11)
      • 24. Wei, Q., Kais, S., Chen, Y.P.: ‘Entanglement switch for dipole arrays’, J. Chem. Phys., 2010, 132, pp. 121104.
    12. 12)
      • 15. Porcelli, E.B., Filho, V.S.: ‘On the anomalous forces in high-voltage symmetrical capacitors’, Phys. Essays, 2016, 29, pp. 29.
    13. 13)
      • 18. Cannae Corporation: ‘Deep space probe’. Available at http://cannae.com, accessed May 2017.
    14. 14)
      • 2. Brady, D.A., White, H.G., March, P., et al: ‘Anomalous thrust production from an RF test device measured on a low-thrust torsion pendulum’. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., NASA Lyndon B. Johnson Space Center, Houston, Texas, AIAA Paper 2014-4029, July 2014, pp. 121.
    15. 15)
      • 36. Canning, F.X., Cole, J., Campbell, J., et al: ‘The ISR asymmetrical capacitor thruster, experimental results and improved designs’. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhibit Fort Lauderdale, Florida, 11–14 July 2004.
    16. 16)
      • 38. Campbell, J.W.: ‘Apparatus for generating thrust using a two dimensional asymmetrical capacitor module’. US Patent 6,411,493, 2002.
    17. 17)
      • 1. Zeller, K., Kraft, B.: ‘Analysis of anomalous thrust experiments from an asymmetric cavity’, American Institute of Aeronautics and Astronautics. Available at https://forum.nasaspaceflight.com, accessed May 2017.
    18. 18)
      • 32. Mahood, T.L.: ‘Propellantless propulsion: recent experimental results exploiting transient mass modification’. CP458 Space Technology and Applications Int. Forum, 1999.
    19. 19)
      • 31. Buehler, D.R.: ‘Exploratory research on the phenomenon of the movement of high voltage capacitors’, J. Space Mixing, 2004, 2, pp. 122.
    20. 20)
      • 11. Juan, Y., Yu-Quan, W., Yan-Jie, M., et al: ‘Prediction and experimental measurement of the electromagnetic thrust generated by a microwave thruster system’, Chin. Phys. B, 2013, 22, (5), pp. 19, 050301.
    21. 21)
      • 22. Toth, G.: ‘Entanglement witnesses in spin models’, Phys. Rev. A, 2005, 71, pp. 010301(R).
    22. 22)
      • 29. Brown, T.T.: ‘A method of and an apparatus or machine for producing force or motion’. U.K. Patent No. 00.311, 1928.
    23. 23)
      • 5. Shawyer, R.: ‘The development of a microwave engine for spacecraft propulsion’, Space Chronicles JBIS, 2005, 58, (Suppl. 1), pp. 2631.
    24. 24)
      • 10. NASA SpaceFlight: ‘New physics for space technology, EM drive developments-related to space flight applications’. Available at http://forum.nasaspaceflight.com/index.php?topic=39772.0, accessed May 2017.
    25. 25)
      • 7. Shawyer, R.: ‘The EMDrive programme-implications for the future of the aerospace industry’. Proc. CEAS European Air and Space Conf., Manchester, United Kingdom, 2009.
    26. 26)
      • 19. Porcelli, E.B., Filho, V.S.: ‘Anomalous effects from dipole-environment quantum entanglement’, Int. J. Adv. Eng. Res. Sci., 2017, 4, (1), pp. 131144.
    27. 27)
      • 6. Shawyer, R.: ‘Microwave propulsion-progress in the EM-Drive programme’. Proc. IAC Conf., Glasgow, Scotland, IAC-08.D1.1.01, 2008.
    28. 28)
      • 25. Fetta, G.: ‘Electromagnetic thrusting system’. US Patent WO 2016/004044 A1, 2016.
    29. 29)
      • 17. Porcelli, E.B., Filho, V.S.: ‘Characterisation of anomalous asymmetric high-voltage capacitors’, IET Sci. Meas. Technol., 2016, 10, (4), pp. 383388.
    30. 30)
      • 8. Shawyer, R.: ‘The EMDrive – a new satellite propulsion technology’. Proc. 2nd Conf. Disruptive Technologies in Space Activities, Toulouse, 2010.
    31. 31)
      • 28. Porcelli, E.B., Filho, V.S.: ‘Induction of forces at distance performed by semiconductor laser diodes’, Am. J. Eng. Res., 2017, 6, (5), pp. 3548.
    32. 32)
      • 9. Shawyer, R.: ‘The dynamic operation of a high Q EMDrive microwave thruster’. Proc. IAC Conf., Beijing, China, IAC-13.C4.P.44, 2013.
    33. 33)
      • 13. Kuninaka, H., Nishiyama, K., Funaki, I., et al: ‘Powered flight of electron cyclotron resonance ion engines on Hayabusa explorer’, J. Propuls. Power, 2007, 23, (2), pp. 544551.
    34. 34)
      • 21. Wu, L.-A., Bandyopadhyay, S., Sarandy, M.S., et al: ‘Entanglement observables and witnesses for interacting quantum spin systems’, Phys. Rev. A, 2005, 72, pp. 032309.
    35. 35)
      • 26. White, H., March, P., Lawrence, J., et al: ‘Measurement of impulsive thrust from a closed radio-frequency cavity in vacuum’, J. Propul. Power, 2007, 33, (4), pp. 830841.
    36. 36)
      • 4. Fetta, G.: ‘Numerical and experimental results for a novel propulsion technology requiring no on-board propellant’, Cannae LLC., Doylestown PA, 18901, July 2014.
    37. 37)
      • 33. Musha, T.: ‘Explanation of dynamical biefeld-brown effect from the standpoint of ZPF field’, J. Br. Interplanet. Soc., 2008, 61, pp. 379384.
    38. 38)
      • 30. Brown, T.T.: ‘Electrokinetic apparatus’. U.S. Patent 3.187.206, 1965.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5204
Loading

Related content

content/journals/10.1049/iet-smt.2018.5204
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address