http://iet.metastore.ingenta.com
1887

access icon openaccess Explaining anomalous forces in dielectric EM drives

Loading full text...

Full text loading...

/deliver/fulltext/iet-smt/12/8/IET-SMT.2018.5204.html;jsessionid=9md1toblm08du.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-smt.2018.5204&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Zeller, K., Kraft, B.: ‘Analysis of anomalous thrust experiments from an asymmetric cavity’, American Institute of Aeronautics and Astronautics. Available at https://forum.nasaspaceflight.com, accessed May 2017.
    2. 2)
      • 2. Brady, D.A., White, H.G., March, P., et al: ‘Anomalous thrust production from an RF test device measured on a low-thrust torsion pendulum’. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., NASA Lyndon B. Johnson Space Center, Houston, Texas, AIAA Paper 2014-4029, July 2014, pp. 121.
    3. 3)
      • 3. Juan, Y., Yu-Quan, W., Yan-Jie, M., et al: ‘Prediction and experimental measurement of the electromagnetic thrust generated by a microwave thruster system’, College of Astronautics, Northwestern Polytechnic University, Xi'an 710072, China, December 2012.
    4. 4)
      • 4. Fetta, G.: ‘Numerical and experimental results for a novel propulsion technology requiring no on-board propellant’, Cannae LLC., Doylestown PA, 18901, July 2014.
    5. 5)
      • 5. Shawyer, R.: ‘The development of a microwave engine for spacecraft propulsion’, Space Chronicles JBIS, 2005, 58, (Suppl. 1), pp. 2631.
    6. 6)
      • 6. Shawyer, R.: ‘Microwave propulsion-progress in the EM-Drive programme’. Proc. IAC Conf., Glasgow, Scotland, IAC-08.D1.1.01, 2008.
    7. 7)
      • 7. Shawyer, R.: ‘The EMDrive programme-implications for the future of the aerospace industry’. Proc. CEAS European Air and Space Conf., Manchester, United Kingdom, 2009.
    8. 8)
      • 8. Shawyer, R.: ‘The EMDrive – a new satellite propulsion technology’. Proc. 2nd Conf. Disruptive Technologies in Space Activities, Toulouse, 2010.
    9. 9)
      • 9. Shawyer, R.: ‘The dynamic operation of a high Q EMDrive microwave thruster’. Proc. IAC Conf., Beijing, China, IAC-13.C4.P.44, 2013.
    10. 10)
      • 10. NASA SpaceFlight: ‘New physics for space technology, EM drive developments-related to space flight applications’. Available at http://forum.nasaspaceflight.com/index.php?topic=39772.0, accessed May 2017.
    11. 11)
      • 11. Juan, Y., Yu-Quan, W., Yan-Jie, M., et al: ‘Prediction and experimental measurement of the electromagnetic thrust generated by a microwave thruster system’, Chin. Phys. B, 2013, 22, (5), pp. 19, 050301.
    12. 12)
      • 12. Tajmar, M., Fiedler, G.: ‘Direct thrust measurements of an EM-drive and evaluation of possible side-effects’. 51st AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Florida, USA, AIAA Paper 2015-4083, July 2015.
    13. 13)
      • 13. Kuninaka, H., Nishiyama, K., Funaki, I., et al: ‘Powered flight of electron cyclotron resonance ion engines on Hayabusa explorer’, J. Propuls. Power, 2007, 23, (2), pp. 544551.
    14. 14)
      • 14. Funaki, I., Kuninaka, H., Toki, K.: ‘Plasma characterization of a 10-cm diameter microwave discharge ion thruster’, J. Propuls. Power, 2004, 20, (4), pp. 718727.
    15. 15)
      • 15. Porcelli, E.B., Filho, V.S.: ‘On the anomalous forces in high-voltage symmetrical capacitors’, Phys. Essays, 2016, 29, pp. 29.
    16. 16)
      • 16. Porcelli, E.B., Filho, V.S.: ‘On the anomalous weight losses in high-voltage symmetrical capacitors’, arXiv:1502.06915, 2015.
    17. 17)
      • 17. Porcelli, E.B., Filho, V.S.: ‘Characterisation of anomalous asymmetric high-voltage capacitors’, IET Sci. Meas. Technol., 2016, 10, (4), pp. 383388.
    18. 18)
      • 18. Cannae Corporation: ‘Deep space probe’. Available at http://cannae.com, accessed May 2017.
    19. 19)
      • 19. Porcelli, E.B., Filho, V.S.: ‘Anomalous effects from dipole-environment quantum entanglement’, Int. J. Adv. Eng. Res. Sci., 2017, 4, (1), pp. 131144.
    20. 20)
      • 20. Wieśniak, M., Vedral, V., Brukner, C.: ‘Magnetic susceptibility as a macroscopic entanglement witness’, New J. Phys., 2005, 7, pp. 258.
    21. 21)
      • 21. Wu, L.-A., Bandyopadhyay, S., Sarandy, M.S., et al: ‘Entanglement observables and witnesses for interacting quantum spin systems’, Phys. Rev. A, 2005, 72, pp. 032309.
    22. 22)
      • 22. Toth, G.: ‘Entanglement witnesses in spin models’, Phys. Rev. A, 2005, 71, pp. 010301(R).
    23. 23)
      • 23. Dowling, M.R., Doherty, A.C., Bartlett, S.D.: ‘Energy as an entanglement witness for quantum many-body systems’, Phys. Rev. A, 2004, 70, pp. 062113062300.
    24. 24)
      • 24. Wei, Q., Kais, S., Chen, Y.P.: ‘Entanglement switch for dipole arrays’, J. Chem. Phys., 2010, 132, pp. 121104.
    25. 25)
      • 25. Fetta, G.: ‘Electromagnetic thrusting system’. US Patent WO 2016/004044 A1, 2016.
    26. 26)
      • 26. White, H., March, P., Lawrence, J., et al: ‘Measurement of impulsive thrust from a closed radio-frequency cavity in vacuum’, J. Propul. Power, 2007, 33, (4), pp. 830841.
    27. 27)
      • 27. Shawyer, R.: ‘Microwave propulsion – the EMDrive programme – implications for the future of the aerospace industry’. CEAS 2009, Manchester, UK, October 2009.
    28. 28)
      • 28. Porcelli, E.B., Filho, V.S.: ‘Induction of forces at distance performed by semiconductor laser diodes’, Am. J. Eng. Res., 2017, 6, (5), pp. 3548.
    29. 29)
      • 29. Brown, T.T.: ‘A method of and an apparatus or machine for producing force or motion’. U.K. Patent No. 00.311, 1928.
    30. 30)
      • 30. Brown, T.T.: ‘Electrokinetic apparatus’. U.S. Patent 3.187.206, 1965.
    31. 31)
      • 31. Buehler, D.R.: ‘Exploratory research on the phenomenon of the movement of high voltage capacitors’, J. Space Mixing, 2004, 2, pp. 122.
    32. 32)
      • 32. Mahood, T.L.: ‘Propellantless propulsion: recent experimental results exploiting transient mass modification’. CP458 Space Technology and Applications Int. Forum, 1999.
    33. 33)
      • 33. Musha, T.: ‘Explanation of dynamical biefeld-brown effect from the standpoint of ZPF field’, J. Br. Interplanet. Soc., 2008, 61, pp. 379384.
    34. 34)
      • 34. Martins, A.A., Pinheiro, M.J.: ‘On the propulsive force developed by asymmetric capacitors in a vacuum’, Phys. Procedia, 2011, 20, pp. 112119.
    35. 35)
      • 35. Canning, F.X., Melcher, C., Winet, E.: ‘Asymmetrical capacitors for propulsion’. NASA/CR-2004-213312, 2004, pp. 116.
    36. 36)
      • 36. Canning, F.X., Cole, J., Campbell, J., et al: ‘The ISR asymmetrical capacitor thruster, experimental results and improved designs’. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhibit Fort Lauderdale, Florida, 11–14 July 2004.
    37. 37)
      • 37. NASA: ‘Apparatus and method for generating a thrust using a two dimensional asymmetrical capacitor module’. US Patent 6,317,310, 2001.
    38. 38)
      • 38. Campbell, J.W.: ‘Apparatus for generating thrust using a two dimensional asymmetrical capacitor module’. US Patent 6,411,493, 2002.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5204
Loading

Related content

content/journals/10.1049/iet-smt.2018.5204
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address