http://iet.metastore.ingenta.com
1887

Circuit arrangement to suppress crosstalk in chemo-resistive sensor arrays

Circuit arrangement to suppress crosstalk in chemo-resistive sensor arrays

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Modern electronic nose and such systems, typically employ gas sensors in arrays. Access to the individual elements in an m × n resistive sensor array requires m + n interconnect lines and effect of crosstalk becomes inevitable. The crosstalk is caused due to the leakage currents in the multiplexer channels as well as the parasitic paths among the non-selected elements in the array. Here, the authors present a novel circuit arrangement to suppress crosstalk in two-dimensional chemo-resistive sensor arrays. The proposed circuit employs a transistorised bypassing scheme, diodes in series and voltage feedback to non-selected elements of an array for crosstalk elimination. Simulation results of a resistive sensor array are presented. Finally, the proposed arrangement has been applied on an 8 × 2 sensor array and the result has been compared with the same array with a normal feedback arrangement for data acquisition. The work can also be extended for general resistive sensor arrays.

References

    1. 1)
      • 1. Sadek, A.Z., Wlodarski, W., Kalantar Zadeh, K., et al: ‘Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors’, Sens. Actuators A, Phys., 2007, 139, (1-2 SPEC. ISS.), pp. 5357.
    2. 2)
      • 2. Janata, J., Josowicz, M.: ‘Conducting polymers in electronic chemical sensors’, Nature Mater., 2003, 2, (1), pp. 1924. Available at http://www.nature.com/doifinder/10.1038/nmat768.
    3. 3)
      • 3. Sharma, S., Hussain, S., Singh, S., et al: ‘MWCNT-conducting polymer composite based ammonia gas sensors: a new approach for complete recovery process’, Sens. Actuators B, Chem., 2014, 194, pp. 213219. Available at http://dx.doi.org/10.1016/j.snb.2013.12.050.
    4. 4)
      • 4. Fine, G.F., Cavanagh, L.M., Afonja, A., et al: ‘Metal oxide semi-conductor gas sensors in environmental monitoring’, Sensors, 2010, 10, (6), pp. 54695502.
    5. 5)
      • 5. Guadarrama, A., Rodríguez Méndez, M.L., De Saja, J.A., et al: ‘Array of sensors based on conducting polymers for the quality control of the aroma of the virgin olive oil’, Sens. Actuators B, Chem., 2000, 69, (3), pp. 276282.
    6. 6)
      • 6. Liu, X., Cheng, S., Liu, H., et al: ‘A survey on gas sensing technology’, Sensors (Switzerland), 2012, 12, (7), pp. 96359665.
    7. 7)
      • 7. Bai, H., Shi, G.: ‘Gas sensors based on conducting polymers’, Sensors, 2007, 7, (3), pp. 267307. Available at http://www.mdpi.com/1424-8220/7/3/267/.
    8. 8)
      • 8. Kolen, P.T.: ‘Self-calibration/compensation technique for microcontroller-based sensor arrays’, IEEE Trans. Instrum. Meas., 1994, 43, (4), pp. 620623.
    9. 9)
      • 9. Beccherelli, R., Zampetti, E., Pantalei, S., et al: ‘Design of a very large chemical sensor system for mimicking biological olfaction’, Sens. Actuators B, Chem., 2010, 146, (2), pp. 446452.
    10. 10)
      • 10. Kim, M.S., Shin, H.J., Park, Y.K.: ‘Design concept of high-performance flexible tactile sensors with a robust structure’, Int. J. Prec. Eng. Manuf., 2012, 13, (11), pp. 19411947.
    11. 11)
      • 11. Zhang, X., Zhao, Y., Zhang, X.: ‘Design and fabrication of a thin and soft tactile force sensor array based on conductive rubber’, Sens. Rev., 2012, 32, (4), pp. 273279.
    12. 12)
      • 12. Wu, J., Wang, L., Li, J., et al: ‘A small size device using temperature sensor array’, Chin. J. Sens. Actuators, 2011, 24, (11), pp. 16491652.
    13. 13)
      • 13. Yang, Y., Cheng, M., Shih, S., et al: ‘A 32° temperature and tactile sensing array using PI-copper films’, Int. J. Adv. Manuf. Technol., 2010, 46, (9–12), pp. 945956.
    14. 14)
      • 14. Saxena, R., Bhan, R., Jalwania, C.: ‘A novel test structure for process control monitor for un-cooled bolometer area array detector technology’, JSTS, J. Semicond. Technol. Sci., 2006, 6, (4), pp. 299312.
    15. 15)
      • 15. Wang, L., Tang, K., Chiu, S., et al: ‘A bio-inspired two-layer multiplewalled carbon nanotube-polymer composite sensor array and a bioinspired fast-adaptive readout circuit for a portable electronic’, Biosensors and Bioelectronics, 2011, 26, (11), pp. 43014307.
    16. 16)
      • 16. Agranov, G., Berezin, V., Tsai, R.: ‘Crosstalk and microlens study in a color CMOS image sensor’, IEEE Trans. Electron., 2003, 50, (1), pp. 411.
    17. 17)
      • 17. Yang, Y., Cheng, M., Chang, W., et al: ‘An integrated flexible temperature and tactile sensing array using PI-copper films’, Sens. Actuators A, 2008, 143, (1), pp. 143153.
    18. 18)
      • 18. D'alessio, T.: ‘Measurement errors in the scanning of piezoresistive sensors arrays’, Sens. Actuators, 1999, 72, pp. 7176.
    19. 19)
      • 19. Saxena, R., Saini, N., Bhan, R.: ‘Analysis of crosstalk in networked arrays of resistive sensors’, IEEE Sens. J., 2011, 11, (4), pp. 920924.
    20. 20)
      • 20. Vidal Verdú, F., Oballe Peinado, Ó., Sánchez Durán, J.: ‘Three realizations and comparison of hardware for piezoresistive tactile sensors’, Sensors, 2011, 11, (3), pp. 32493266.
    21. 21)
      • 21. Saxena, R., Bhan, R., Aggrawal, A.: ‘A new discrete circuit for readout of resistive sensor arrays’, Sens. Actuators A, Phys., 2009, 149, (1), pp. 9399.
    22. 22)
      • 22. Liu, H., Zhang, Y., Liu, Y., et al: ‘Measurement errors in the scanning of resistive sensor arrays’, Sens. Actuators A, Phys., 2010, 163, (1), pp. 198204.
    23. 23)
      • 23. Wu, J., He, S., Li, J., et al: ‘Cable crosstalk suppression with two-wire voltage feedback method for resistive sensor array’, Sensors, 2016, 16, (2), p. 253.
    24. 24)
      • 24. Wu, J.F., Wang, Y., Li, J.Q., et al: ‘A novel two-wire fast readout approach for suppressing cable crosstalk in a tactile resistive sensor array’, Sensors (Switzerland), 2016, 16, (5), p. 720.
    25. 25)
      • 25. Wu, J., Wang, L., Li, J.: ‘Design and crosstalk error analysis of the circuit for the 2-D networked resistive sensor array’, IEEE Sens. J., 2015, 15, (2), pp. 10201026.
    26. 26)
      • 26. Prutchi, D., Mircea, A.: ‘Dynamic contact stress analysis using a compliant sensor array.pdf’, Measurement, 1993, 11, pp. 187210.
    27. 27)
      • 27. Shu, L., Tao, X., Feng, D.D.: ‘A new approach for readout of resistive sensor arrays for wearable electronic applications’, IEEE Sens. J., 2015, 15, (1), pp. 442452.
    28. 28)
      • 28. Yarahmadi, R., Safarpour, A., Lotfi, R.: ‘An improved-accuracy approach for readout of large-array resistive sensors’, IEEE Sens. J., 2016, 16, (1), pp. 210215.
    29. 29)
      • 29. Kim, J.S., Kwon, D.Y., Choi, B.D.: ‘High-accuracy, compact scanning method and circuit for resistive sensor arrays’, Sensors (Switzerland), 2016, 16, (2), p. 155.
    30. 30)
      • 30. Hidalgo López, J.A., Romero Sánchez, J., Fernández Ramos, R.: ‘New approaches for increasing accuracy in readout of resistive sensor arrays’, IEEE Sens. J., 2017, 17, (7), pp. 21542164.
    31. 31)
      • 31. Hidalgo López, J.A., Oballe Peinado, Ó., Castellanos Ramos, J., et al: ‘High-accuracy readout electronics for piezoresistive tactile sensors’, Sensors (Switzerland), 2017, 17, (11), p. 2513.
    32. 32)
      • 32. Oballe Peinado, Ó., Vidal Verdú, F., Sánchez Durán, J.A., et al: ‘Improved circuits with capacitive feedback for readout resistive sensor arrays’, Sensors (Switzerland), 2016, 16, (2), pp. 119.
    33. 33)
      • 33. Saxena, R.S., Bhan, R.K., Jalwania, C.R., et al: ‘A novel test structure for process control monitor for un-cooled bolometer area array detector technology’, JSTS, J. Semicond. Technol. Sci., 2006, 6, (4), pp. 299312.
    34. 34)
      • 34. Saxena, R.S., Bhan, R.K., Saini, N.K., et al: ‘Virtual ground technique for crosstalk suppression in networked resistive sensors’, IEEE Sens. J., 2011, 11, (2), pp. 432433.
    35. 35)
      • 35. Devices, A.: ‘MOS 4-/8-channel high performance analog multiplexers FEATURES 44 V supply maximum ratings VSS to VDD analog signal range low on resistance (100 maximum) low power (ISUPPLY < 75 µA) fast switching break-before-make switching action plug-in replacement’. Available at http://www.analog.com/media/en/technical-documentation/data-sheets/ADG408{\_}409.pdf.
    36. 36)
      • 36. MAX4684 0.5/0.8 low-voltage, dual SPDT analog switches in UCSP-Maxim’. Available at https://www.maximintegrated.com/en/products/analog/analog-switches-multiplexers/MAX4684.html.
    37. 37)
      • 37. Saxena, R.S., Semwal, S.K., Rana, P.S., et al: ‘Crosstalk suppression in networked resistive sensor arrays using virtual ground technique’, Int. J. Electron., 2013, 100, (11), pp. 15791591. Available at http://www.tandfonline.com/doi/abs/10.1080/00207217.2012.751327.
    38. 38)
      • 38. Wu, J., He, S., Li, J., et al: ‘Cable crosstalk suppression with two-wire voltage feedback method for resistive sensor array’, Sensors, 2016, 16, (2), p. 253.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5187
Loading

Related content

content/journals/10.1049/iet-smt.2018.5187
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address