Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Feature extraction using frequency spectrum and time domain analysis of vibration signals to monitoring advanced ceramic in grinding process

New alternatives for monitoring the ceramic grinding process have been studied. Monitoring vibration signals is one of the most successful methods because some characteristics that describe the behaviour and influence of the process on ground parts are only noticeable by studying such signals. This study aims to monitor the finishing of advanced ceramics during the surface grinding process via digital processing of the vibration signals. Experimental tests were performed using a surface tangential grinding machine with a diamond grinding wheel and alumina (Al2O3) test specimens. The vibration signal was measured by an accelerometer and recorded by an oscilloscope at a 2 MHz sampling rate. The tests were conducted at different depths of cut for two workpiece speeds (v w) under mild and severe machining conditions. Confocal microscopy and surface roughness Ra measurements were performed after grinding each workpiece to classify the samples. Digital signal processing was performed to achieve feature extraction. A frequency range of 800 Hz–2 kHz was most strongly related to the post-grinding ceramic condition. A correlation was found between vibration and integrity of the ceramic workpiece because the vibration signal was proportional to the surface roughness for each cutting depth used. To support the conclusion presented, a statistical analysis through variance by analysis of variance was performed.

References

    1. 1)
      • 12. Kumar, M., Melkote, S., Lahoti, G.: ‘Laser-assisted microgrinding of ceramics’, CIRP Ann.-Manuf. Technol., 2011, 60, (1), pp. 367370.
    2. 2)
      • 31. Marchi, M., Baptista, F.G., Aguiar, P.R., et al: ‘Grinding process monitoring based on electromechanical impedance measurements’, Meas. Sci. Technol., 2015, 26, (4), p. 45601.
    3. 3)
      • 4. Emami, M., Sadeghi, M.H., Sarhan, A.A.D., et al: ‘Minimum quantity lubrication in grinding process of zirconia (ZrO2) engineering ceramic’, Int. J. Min. Metall. Mech. Eng., 2013, 1, (3), pp. 187190.
    4. 4)
      • 24. Junior, P.O.C., Souza, R.V., Cesar, H.M., et al: ‘Wear monitoring of single-point dresser in dry dressing operation based on neural models’. Proc. of the IASTED Int. Conf. on Modelling, Identification and Control, Innsbruck, Austria, 2017, vol. 36, no. 848, pp. 178185.
    5. 5)
      • 35. Miranda, H.I., Rocha, C.A., Oliveira, P.C.J., et al: ‘Monitoring single-point dressers using fuzzy models’, Procedia CIRP, 2015, 33, pp. 281286.
    6. 6)
      • 28. Sutowski, P., Plichta, S.: ‘An investigation of the grinding wheel wear with the use of root-mean-square value of acoustic emission’, Arch. Civ. Mech. Eng., 2006, 6, (1), pp. 8798.
    7. 7)
      • 15. Agarwal, S., Venkateswara, P.R.: ‘Predictive modeling of undeformed chip thickness in ceramic grinding’, Int. J. Mach. Tools Manuf., 2012, 56, pp. 5968.
    8. 8)
      • 6. Webster, J., Tricard, M.: ‘Innovations in abrasive products for precision grinding’, CIRP Ann.-Manuf. Technol., 2004, 53, (2), pp. 597617.
    9. 9)
      • 14. Mayer, J.E.Jr.: ‘Grinding of ceramics with attention to strength and depth of grinding damage’, in Marinescu, I. D. (Ed.): ‘Handbook of Advanced Ceramics Machining’ (Taylor & Francis, Boca Raton, USA, 2007), pp. 87107.
    10. 10)
      • 37. Zeng, Y., Forssberg, E.: ‘Monitoring grinding parameters by vibration signal measurement – a primary aplication’, Miner. Eng., 1994, 7, (4), pp. 495501.
    11. 11)
      • 5. Marinescu, I.D.: ‘Handbook of advanced ceramics machining’ (CRC Press, Boca Raton, USA, 2010).
    12. 12)
      • 34. Xu, C., Liu, Z., Luo, W.: ‘A frequency band energy analysis of vibration signals for tool condition monitoring’. Int. Conf. Measuring Technology Mechatronics Automation ICMTMA, Zhangjiajie, Hunan, China, 2009, vol. 1, pp. 385388.
    13. 13)
      • 10. Zhang, B., Howes, T.D.: ‘Material-removal mechanisms in grinding ceramics’, CIRP Ann.-Manuf. Technol., 1994, 43, (1), pp. 305308.
    14. 14)
      • 33. El-Wardany, T.I., Gao, D., Elbestawi, M.A.: ‘Tool condition monitoring in drilling using vibration signature analysis’, Int. J. Mach. Tools Manuf., 1996, 36, (6), pp. 687711.
    15. 15)
      • 23. Feng, J., Kim, B.S., Shih, A., et al: ‘Tool wear monitoring for micro-end grinding of ceramic materials’, J. Mater. Process. Technol., 2009, 209, (11), pp. 51105116.
    16. 16)
      • 41. Malkin, S., Guo, C.: ‘Grinding technology: theory and applications of machining with abrasives’ (Industrial Press Inc., New York, 2008, 2nd edn.).
    17. 17)
      • 3. Agarwal, S., Rao, P. V.: ‘A probabilistic approach to predict surface roughness in ceramic grinding’, Int. J. Mach. Tools Manuf., 2005, 45, (6), pp. 609616.
    18. 18)
      • 9. Inasaki, I.: ‘Grinding of hard and brittle materials’, CIRP Ann.-Manuf. Technol., 1987, 36, (2), pp. 463471.
    19. 19)
      • 22. Akbari, J., Saitob, Y., Tadaaki, H., et al: ‘Effect of grinding parameters on acoustic emission signals while grinding ceramics’, J. Mater. Process. Technol. Conf. Prod. Eng., 1996, 62, pp. 403407.
    20. 20)
      • 17. Tonshoff, H.K., Friemuth, T., Becker, J.C.: ‘Process monitoring in grinding’, Ann. CIRP, 2002, 51, (2), pp. 551571.
    21. 21)
      • 32. Chen, B., Zhang, Z., Zi, Y., et al: ‘Detecting of transient vibration signatures using an improved fast spatial-spectral ensemble kurtosis kurtogram and its applications to mechanical signature analysis of short duration data from rotating machinery’, Mech. Syst. Signal Process., 2013, 40, (1), pp. 137.
    22. 22)
      • 40. ASTM E1382-97: ‘Standard test methods for determining average grain size using semiautomatic and automatic image analysis’, ASTM Compass, 2015.
    23. 23)
      • 11. Kitajima, K., Cai, G.Q., Kurnagai, N., et al: ‘Study on mechanism of ceramics grinding’, CIRP Ann.-Manuf. Technol., 1992, 41, (1), pp. 367371.
    24. 24)
      • 26. Nakai, M.E., Junior, H.G., Aguiar, P.R., et al: ‘Neural tool condition estimation in the grinding of advanced ceramics’, IEEE Lat. Am. Trans., 2015, 13, (1), pp. 6268.
    25. 25)
      • 36. Conceição Junior, P.O., Marchi, M., Martins, C.H.R., et al: ‘Spectral estimation of vibration signal for monitoring the wear of single-point dresser’, Rev. Mater., 2016, 21, (4), pp. 827840.
    26. 26)
      • 30. Sun, F., Chaudhry, Z., Linag, C., et al: ‘Truss structure integrity identification using PZT sensor-actuator’, J. Intell. Mater. Syst. Struct., 1995, 6, pp. 134139.
    27. 27)
      • 39. Welch, P.D.: ‘The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms’, IEEE Trans. Audio Electroacoust., 1967, 15, (2), pp. 7073.
    28. 28)
      • 2. Fiocchi, A.A., Sanches, L.E.A., Lisboa-filho, P.N., et al: ‘The ultra-precision U d -lap grinding of flat advanced ceramics’, J. Mater. Process. Tech., 2016, 231, pp. 336356.
    29. 29)
      • 27. Nakai, M.E., Junior, H.G., Spadoto, M., et al: ‘ANFIS applied to the prediction of surface roughness in grinding of advanced ceramics’. IASTED Conf. Artificial Intelligence Soft Computing, Crete, Greece, 2011, vol. 30, pp. 329334.
    30. 30)
      • 13. Bifano, T.G., Dow, T.A., Scattergood, R.O.: ‘Ductile-regime grinding: a new technology for machining brittle materials’, J. Eng. Ind., 1991, 113, (2), pp. 184189.
    31. 31)
      • 38. Silva, D.H., Polito, P.F., Braga, C.M., et al: ‘Digital signal processing for vibration monitoring in hydroelectric generators’. Brazil Automation ISA, São Paulo, Brazil, 2013, vol. 13, pp. 110.
    32. 32)
      • 42. Marinescu, I.D., Rowe, W.B., Dimitrov, B., et al: ‘Tribology of abrasive machining processes’ (Willian Andrew Publ., Norwich, 2004).
    33. 33)
      • 18. Nakai, M.E., Júnior, H.G., Aguiar, P.R., et al: ‘Evaluation of neural models to estimate the roughness of advanced ceramics in surface grinding’, Int. J. Mach. Mach. Mater., 2015, 17, (5), pp. 454479.
    34. 34)
      • 20. Yamamoto, T., Fukumoto, I., Kinjo, H.: ‘Process sensing of abnormal grinding condition caused by loading chips using ADF’, Int. J. of Japan Soc. for Precision Eng., 1992, 26, (4), pp. 296301.
    35. 35)
      • 19. Hassui, A., Diniz, A.E.: ‘Correlating surface roughness and vibration on plunge cylindrical grinding of steel’, Int. J. Mach. Tools Manuf., 2003, 43, (8), pp. 855862.
    36. 36)
      • 43. Aherwar, A., Unune, D., Pathri, B., et al: ‘Statistical and regression analysis of vibration of carbon steel cutting tool for turning of EN24 steel using design of experiments’, Int. J. Recent Adv. Mech. Eng., 2014, 3, (3), pp. 137151.
    37. 37)
      • 29. Brüel & Kjaer: ‘Measuring of vibration’, (Brüel & Kjaer, Naerum, Denmark, 1982, pp. 42).
    38. 38)
      • 16. Agarwal, S., Venkateswara, P.R.: ‘Modeling and prediction of surface roughness in ceramic grinding’, Int. J. Mach. Tools Manuf., 2010, 50, (12), pp. 10651076.
    39. 39)
      • 25. Quintana, G., Bustillo, A., Ciurana, J., et al: ‘Prediction, monitoring and control of surface roughness in high-torque milling machine operations’, Inter. J. Comp. Integ. Manuf, 2012, 25, (12), pp. 11291138.
    40. 40)
      • 1. Agarwal, S.: ‘Optimizing machining parameters to combine high productivity with high surface integrity in grinding silicon carbide ceramics’, Ceram. Int., 2016, 42, (5), pp. 62446262.
    41. 41)
      • 8. Bianchi, E.C., Aguiar, P.R., Silva, E.J., et al: ‘Advanced ceramics: evaluation of the mechanism of stock removal and ground surface quality’, J. Braz. Soc. Mech. Sci., 2001, 23, (1), pp. 922.
    42. 42)
      • 21. Ribeiro, D.M., Junior, P.O.C., Sodário, R.D., et al: ‘Low-cost piezoelectric transducer applied to workpiece surface monitoring in grinding process’, ABCM Int. Congress Mechanical Engineering - COBEM, 2015, 23, pp. 110.
    43. 43)
      • 7. Conceiçao Junior, P.O., Marchi, M., Aguiar, P.R., et al: ‘The correlation of vibration signal features in grinding of advanced ceramics’, IEEE Lat. Am. Trans., 2016, 14, (9), pp. 40064012.
    44. 44)
      • 44. Alves, L.O.S., Ruzzi, R.S., Silva, R.B., et al: ‘Performance evaluation of the minimum quantity of lubricant technique with auxiliary cleaning of the grinding wheel in cylindrical grinding of N2711 steel’, J. Manuf. Sci. Eng., 2017, 139, (12), p. 121018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5178
Loading

Related content

content/journals/10.1049/iet-smt.2018.5178
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address