Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimisation of double-sided linear switched reluctance motor for mass and force ripple minimisation

Linear switched reluctance motors (LSRMs) are attractive machines for industrial applications. Their structure is simple, robust, and low cost. Despite these advantages, LSRMs suffer from inherent high force ripples which induce noise and vibration problems. The force performance of these motors is largely influenced by their geometry. Therefore, the dimensions must be optimised to improve the force performance. The aim of the present work was to determine the optimum dimensions of a double-sided LSRM using non-dominated sorting genetic algorithm-II and multi-objective seeker optimisation algorithm along with a three-dimensional (3D) finite element analysis. The analysis and modelling results are presented, and a laboratory prototype is built. The results revealed that the optimised motor has a higher average force, lower force ripple, and lower total mass

References

    1. 1)
      • 11. Song, S., Zhang, M., Wang, L.: ‘Multiobjective optimal design of switched reluctance linear launcher’, IEEE Trans. Plasma Sci., 2015, 43, (5), pp. 13391345.
    2. 2)
      • 3. Lobo, N.S., Lim, H.S., Krishnan, R.: ‘Comparison of linear switched reluctance machines for vertical propulsion application: analysis, design and experimental correlation’, IEEE Trans. Ind. Appl., 2008, 44, (4), pp. 11341142.
    3. 3)
      • 18. Pan, J.F., Cao, G.Z.: ‘An asymmetric linear switched reluctance motor’, IEEE Trans. Energy Convers., 2013, 28, (2), pp. 444452.
    4. 4)
      • 8. Wang, H., Wang, Y., Liu, X., et al: ‘Design of novel bearingless switched reluctance motor’, IET Electr. Power Appl., 2012, 6, (2), pp. 7381.
    5. 5)
      • 1. Miller, T.J.E.: ‘Switched reluctance motor and their control’ (Magna Physics Publication/Clarendon Press, Oxford, 1993).
    6. 6)
      • 27. Balaji, M., Kamaraj, V.: ‘Optimum design of switched reluctance machine using adaptive particle swarm optimisation’, ARPN J. Eng. Appl. Sci., 2012, 7, (6), pp. 666672.
    7. 7)
      • 12. Fonseca, D.S.B., Cabrita, C.P., Calado, M.R.A.: ‘Linear switched reluctance motor. A new design methodology based on performance evaluation’. IEEE Int. Conf. on Industrial Technology, Hammamet, Tunisia, Tunisia, December 2004, pp. 519525.
    8. 8)
      • 5. Daldaban, F., Ustkoyuncu, N.: ‘A novel linear switched reluctance motor for railway transportation systems’, Energy Convers. Manage., 2010, 51, pp. 465469.
    9. 9)
      • 4. Daldaban, F., Ustkoyuncu, N.: ‘A new double sided linear switched reluctance motor with low cost’, Energy Convers. Manage., 2006, 47, pp. 29832990.
    10. 10)
      • 26. Mousavi-Aghdam, S.R., Feyzi, M.R., Ebrahimi, Y.: ‘A new switched reluctance motor design to reduce torque ripple using finite element fuzzy optimisation’, Iran. J. Electr. Electron. Eng., 2012, 8, (1), pp. 9198.
    11. 11)
      • 22. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast and elitist multi-objective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, (2), pp. 182197.
    12. 12)
      • 14. Jang, S.M., Park, J.M., You, D.J., et al: ‘Design of high speed linear switched reluctance motor’. Proceeding of Int. Conf. on Electrical Machines and Systems, Seoul, South Korea, December 2007, pp. 811.
    13. 13)
      • 24. Sahraoui, H., Zeroug, H., Toliyat, H.A.: ‘Switched reluctance motor design using neural-network method with static finite-element simulation’, IEEE Trans. Magn., 2007, 43, (12), pp. 40894096.
    14. 14)
      • 13. Liu, Y.J., Widdowson, S.Y., Ho, S.Y., et al: ‘Design and analysis of linear switched reluctance motor for high precision position control’. IEEE Int. Conf. on Electric Machines and Drives, Antalya, Turkey, May 2007, pp. 5558.
    15. 15)
      • 30. Dai, C., Chen, W., Zhu, Y.: ‘Seeker optimisation algorithm for digital IIR filter design’, IEEE Trans. Ind. Electron., 2010, 57, (5), pp. 17101718.
    16. 16)
      • 15. Amoros, J.G., Andrada, P.: ‘Sensitivity analysis of geometrical parameters on a double-sided linear switched reluctance motor’, IEEE Trans. Ind. Electron., 2010, 57, (1), pp. 311320.
    17. 17)
      • 23. Kumar, D., Samantaray, S.R., Kamwa, I.: ‘MOSOA-based multiobjective design of power distribution systems’, IEEE Syst. J., 2017, 11, (2), pp. 11821195.
    18. 18)
      • 6. Lim, H.S., Krishnan, R.: ‘Ropeless elevator with linear switched reluctance motor drive actuation systems’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 22092217.
    19. 19)
      • 31. Lai, Y.J., Hwang, C.L.: ‘Fuzzy multiple objective decision making. Methods and applications’ (Springer-Verlag, Berlin, Germany, 1994).
    20. 20)
      • 10. Cao, G.Z., Fang, J.L., Huang, S.D., et al: ‘Optimisation design of the planar switched reluctance motor on electromagnetic force ripple minimization’, IEEE Trans. Magn., 2014, 50, (11), pp. 107115.
    21. 21)
      • 21. Elsayed, S.M., Sarker, R.A, Essam, D.L.: ‘A new genetic algorithm for solving optimisation problems’, Eng. Appl. Artif. Intell., 2014, 27, pp. 5769.
    22. 22)
      • 9. Pan, J.F., Cheung, N.C., Zou, Y.: ‘Design and analysis of a novel transverse-flux tubular linear machine with gear-shaped teeth structure’, IEEE Trans. Magn., 2012, 48, (11), pp. 33393343.
    23. 23)
      • 7. Lim, H.S., Krishnan, R., Lobo, N.S.: ‘Design and control of a linear propulsion system for an elevator using linear switched reluctance motor drives’, IEEE Trans. Ind. Electron., 2008, 55, (2), pp. 534542.
    24. 24)
      • 32. Moslemi, H., Zandieh, M.: ‘Comparisons of some improving strategies on MOPSO for multi-objective inventory system’, Expert Syst. Appl., 2011, 38, (10), pp. 1205112057.
    25. 25)
      • 2. Krishnan, R.: ‘Switched reluctance motor drives: modelling, simulation, analysis, and applications’ (CRC Press, Boca Raton, 2001), pp. 151177.
    26. 26)
      • 16. Amoros, J.G., Andrada, P., Blanque, B.: ‘An analytical approach to the thermal design of a double-sided linear switched reluctance motor’. IEEE Int. Conf. on Electrical Machines, Rome, Italy, October 2010, pp. 14.
    27. 27)
      • 33. Derrac, J., García, S., Molina, D., et al: ‘A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms’, Swarm. Evol. Comput., 2011, 1, (1), pp. 318.
    28. 28)
      • 17. Zhang, Z., Cheung, N.C., Cheng, K.W.E., et al: ‘Longitudinal and transversal end effects analysis of linear switched reluctance motor’, IEEE Trans. Magn., 2011, 47, (10), pp. 39793983.
    29. 29)
      • 20. Mirzaeian, B., Moallem, M., Tahani, V, et al: ‘Multi-objective optimisation method based on a genetic algorithm for switched reluctance motor design’, IEEE Trans. Magn., 2002, 38, (3), pp. 15241526.
    30. 30)
      • 29. Dai, C., Chen, W., Zhu, Y, et al: ‘Seeker optimisation algorithm for optimal reactive power dispatch’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 12181231.
    31. 31)
      • 19. Masoudi, S., Feyzi, M.R., Sharifian, M.B.B.: ‘Force ripple and jerk minimization in double sided linear switched reluctance motor used in elevator application’, IET Electr. Power Appl., 2016, 10, (6), pp. 508516.
    32. 32)
      • 28. Dai, C., Chen, W., Song, Y., et al: ‘Seeker optimisation algorithm: a novel stochastic search algorithm for global numerical optimisation’, J. Syst. Eng. Electron., 2010, 21, (2), pp. 300311.
    33. 33)
      • 25. Darabi, S., Ardebili, M.: ‘Optimisation of driving force of linear switched reluctance motor’. IEEE Int. Conf. on Power Electronics, Drive Systems and Technology, Singapore, December 2011, pp. 7175.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5160
Loading

Related content

content/journals/10.1049/iet-smt.2018.5160
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address