Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Performance analysis of epoxy nanocomposites due to water droplet-initiated discharges under AC and DC voltages and localisation of discharges

Corona inception voltage (CIV) due to water droplet sitting over the surface of epoxy nanocomposite material depends on supply voltage frequency, the conductivity of water droplet and the contact angle of the test specimens. The contact angle of the specimen and CIV due to water droplet has a direct correlation. It is realised that the CIV is high under negative DC and the least under AC voltages. Surface charge accumulation studies indicate that the accumulated charge and its decay time constant reduces in the damage-caused zone due to corona activity. The ultra-high frequency (UHF) signal generated due to water droplet-initiated corona activity has frequency content in the range of 0.8–1 GHz. The localisation of incipient discharges is demonstrated by using the non-iterative technique and the cross recurrence plot (CRP) technique is used to estimate the time difference of arrival (TDOA) of UHF signals generated due to water droplet-initiated discharge. Laser-induced breakdown spectroscopy (LIBS) depicts the elemental composition and reveals the difference in plasma temperature and threshold fluence between all the test specimens. In short, the performance of ion trapping particle filled epoxy nanocomposite performance is found to be best followed by titania filled epoxy nanocomposite and the base epoxy resin.

References

    1. 1)
      • 39. Zhang, S, Wang, X, He, M., et al: ‘Laser-induced plasma temperature’, Spectrochim. Acta B, At. Spectrosc., 2014, 97, pp. 1333.
    2. 2)
      • 11. Tanaka, T., Imai, T.: ‘Advanced nanodilectrics: fundamentals and applications’ (CRC Press, Florida, 2017), pp. 244258.
    3. 3)
      • 36. Kumara, S., Ma, B., Serdyuk, Y.V., et al: ‘Surface charge decay on HTV silicone rubber: effect of material treatment by corona discharges’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (6), pp. 21892195.
    4. 4)
      • 24. IEC 60 112.: ‘Recommended method for determining the comparative tracking index of solid insulating material under the moist condition’, 2nd Edition, 1972.
    5. 5)
      • 18. Alexander, D.R., Poulain, D.E., Ahmad, M.U., et al: ‘Environmental monitoring of soil contaminated with heavy metals using Laser-induced breakdown spectroscopy’. Geoscience and Remote Sensing Symp., Palmerston North, New Zealand, 1994, Vol. 2, pp. 767769.
    6. 6)
      • 12. Imai, T., Sawa, F., Ozaki, T., et al: ‘Influence of temperature on mechanical and insulation properties of epoxy-layered silicate nanocomposite’, IEEE Trans. Dielectr. Electr. Insul, 2006, 13, (2), pp. 445452.
    7. 7)
      • 26. Marwan, N., Romano, M.C., Thiel, M., et al: ‘Recurrence plots for the analysis of complex systems’, Phys. Rep., 2007, 438, (5–6), pp. 237329.
    8. 8)
      • 30. Antony, D., Punekar, G.S.: ‘Identification of invalid time-delay-groups using discriminant and Jacobian-determinant in acoustic emission PD source localisation’, IET Sci., Meas. Technol., 2017, 11, (3), pp. 315321.
    9. 9)
      • 5. Tsekmes, I.A, Morshuis, P.H.F., Smit, J.J., et al: ‘Enhancing the thermal and electrical performance of epoxy microcomposites with the addition of nanofillers’, IEEE Electr. Insul. Mag., 2015, 31, (3), pp. 3242.
    10. 10)
      • 29. Kundu, P., Kishore, N.K., Sinha, A.K.: ‘A non-iterative partial discharge source location method for transformers employing acoustic emission techniques’, Appl. Acoust., 2009, 70, (11–12), pp. 13781383.
    11. 11)
      • 7. Kochetov, R., Andritsch, T., Morshuis, P.H.F., et al: ‘Anomalous behaviour of the dielectric spectroscopy response of nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 107117.
    12. 12)
      • 32. Zhang, T., Luo, L., Hou, H., et al: ‘UHF signal model parameters identification and reconstruction for partial discharge in substation’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), Xiʼan, China, 2016, pp. 242245.
    13. 13)
      • 17. Maity, P., Basu, S., Parameswaran, V., et al: ‘Degradation of polymer dielectrics with nanometric metal-oxide fillers due to surface discharges’, IEEE Trans. Dielectr. Electr. Insul, 2008, 15, pp. 5262.
    14. 14)
      • 35. Molinié, P., Goldman, M., Gatellet, J.: ‘Surface potential decay on corona-charged epoxy samples due to polarization processes’, J. Phys. D, Appl. Phys., 1995, 28, (8), pp. 16011610.
    15. 15)
      • 13. Kozako, M., Kido, R., Imai, T., et al: ‘Surface roughness change of epoxy/TiO2 nanocomposite due to partial discharges’. Proc. 2005 Int. Symp. on Electrical Insulating Material, Kitakyushu, Japan, 2005, vol. 3, pp. 661664.
    16. 16)
      • 20. Lapes, J.S., Jayaram, S.H., Cherney, E.A.: ‘A study of partial discharges from water droplets on a silicone rubber insulating surface’, IEEE Trans. Dielectr. Electr. Insul., 2001, 8, (2), pp. 262268.
    17. 17)
      • 16. Jiandong, W., Wenhui, L., Yu, Z., et al: ‘Effect of nano additive size on the space charge behaviour in LDPE/SiO2 nanocomposite’. Int. Conf. on Solid Dielectrics, Potsdam, Germany, 2010, pp. 14.
    18. 18)
      • 6. Singha, S., Thomas, M.J.: ‘Dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 1223.
    19. 19)
      • 15. Du, B.X., Jhang, J.W., Gao, Y.: ‘Effects of TiO2 particles on surface charge of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 755762.
    20. 20)
      • 38. Sansonetti, J.E.,, Martin, W.C.: ‘Handbook of basic atomic spectroscopic data’, J. Phys. Chem. Ref. Data, 2005, 34, pp. 15592259.
    21. 21)
      • 4. Iyer, G., Gorur, R.S., Krivda, A.: ‘Understanding electrical discharge endurance of epoxy micro and nano composites through thermal analysis’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (1), pp. 225229.
    22. 22)
      • 28. Bot, O.L., Gervaise, C., Mars, J.I., et al: ‘Similarity matrix analysis and divergence measures for statistical detection of unknown deterministic signals hidden in additive noise’, Phys. Lett. A, 2015, 379, (40–41), pp. 25972609.
    23. 23)
      • 25. Zbilut, P., Giuliani, A., Webber, C.L., et al: ‘Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification’, Phys. Lett. A, 1998, 246, (1–2), pp. 122128.
    24. 24)
      • 23. Imai, T., Sawa, F., Ozaki, T., et al: ‘Evaluation of insulation properties of epoxy resin with nano-scale silica particles’. Proc. ISEIM, Kitakyushu, Japan, 2005, Vol. 1, pp. 239242.
    25. 25)
      • 33. Sjöstedt, H., Gubanski, S.M., Serdyuk, Y.V.: Charging characteristics of EPDM and silicone rubbers deduced from surface potential measurements’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, 3 pp. 696703.
    26. 26)
      • 34. Phillips, A.J., Billings, R.H., Schneider, H.M.: ‘Water drop corona effects on full-scale 500 kV non-ceramic insulators’, IEEE Trans. PWD, 1999, 14, (1), pp. 9991020.
    27. 27)
      • 8. Thabet, A.: ‘Theoretical analysis for effects of nanoparticles on dielectric characterization of electrical industrial materials’, Electr. Eng. (ELEN) J., 2016, 99, (2), pp. 487493.
    28. 28)
      • 10. Sarathi, R., Harsha, V.S., Vasa, N. J., et al: ‘Water droplet initiated discharges on epoxy nano composites under DC voltages’, IEEE trans.Dielectr. Electr. Insul., 2016, 23, (3), pp. 17431752.
    29. 29)
      • 31. Liu, Y., Zhou, W., Li, P., et al: ‘An ultrahigh frequency partial discharge signal de-noising method based on a generalized S-transform and module time-frequency matrix’, Sensors, 2016, 16, (6), p. 941.
    30. 30)
      • 27. Packard, N.H., Crutchfield, J.P., Farmer, J.D., et al: ‘Geometry from a time series’, Phys. Rev. Lett., 1980, 45, (9), pp. 712716.
    31. 31)
      • 37. Meyer, L.H., Jayaram, S.H., Cherney, E.A.: ‘A novel technique to evaluate the erosion resistance of silicone rubber composites for high voltage outdoor insulation using infrared laser erosion’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (6), pp. 12011208.
    32. 32)
      • 19. DeLucia, F.C., Samuels, A. C., Harmon, R. S., et al: ‘Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection’, IEEE Sens. J., 2005, 5, (4), pp. 681689.
    33. 33)
      • 9. Nazemi, M.H., Hinrichsen, V.: ‘Experimental investigations on partial discharge characteristics of water droplets on polymeric insulating surfaces at AC DC and combined AC–DC voltages’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 22612270.
    34. 34)
      • 3. Roy, M., Nelson, J.K., MacCrone, R.K., et al: ‘Polymer nanocomposites dielectrics—the role of the interface’, IEEE Trans. Dielectr. Electr. Insul., 2005, 2, (4), pp. 629641.
    35. 35)
      • 1. Iyer, G., Gorur, R.S., Richert, R., et al: ‘Dielectric properties of epoxy based nanocomposites for high voltage insulation’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (3), pp. 659666.
    36. 36)
      • 21. Murthy, V.S., Gupta, S., Mohanta, D.K.: ‘Digital image processing approach using combined wavelet hidden Markov model for well-being analysis of insulators’, IET Image Process., 2011, 5, (2), pp. 171183.
    37. 37)
      • 22. Bot, O.L., Gervaise, C., Mars, J.: ‘Time-difference-of-arrival estimation based on cross recurrence plots, with application to underwater acoustic signals’, in Webber, C.L., Ioana, C., Marwan, N. (Ed.): ‘Recurrence plots and their quantifications: expanding horizons (Springer Proceedings in Physics 180)’(Springer, 2016), pp. 265288.
    38. 38)
      • 2. Lia, H., Du, B., Jin, L., et al: ‘Effects of non-linear conductivity on charge trapping and de-trapping behaviours in epoxy/SiC composites under DC stress’, IET Sci. Meas. Technol., 2017, 12, (21), pp. 8389.
    39. 39)
      • 14. Wu, H., Liu, C., Chen, J., et al: ‘Preparation and characterization of chitosan/α-zirconium phosphate nanocomposite films’, Polym. Int., 2010, 59, (7), pp. 923930.
    40. 40)
      • 40. Cowpe, J.S., Moorehead, R.D., Moser, D., et al: ‘Hardness determination of bio-ceramics using laser-induced breakdown spectroscopy’, Spectrochim. Acta B, 2011, 66, (3–4), pp. 290294.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5056
Loading

Related content

content/journals/10.1049/iet-smt.2018.5056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address