http://iet.metastore.ingenta.com
1887

Performance analysis of epoxy nanocomposites due to water droplet-initiated discharges under AC and DC voltages and localisation of discharges

Performance analysis of epoxy nanocomposites due to water droplet-initiated discharges under AC and DC voltages and localisation of discharges

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Corona inception voltage (CIV) due to water droplet sitting over the surface of epoxy nanocomposite material depends on supply voltage frequency, the conductivity of water droplet and the contact angle of the test specimens. The contact angle of the specimen and CIV due to water droplet has a direct correlation. It is realised that the CIV is high under negative DC and the least under AC voltages. Surface charge accumulation studies indicate that the accumulated charge and its decay time constant reduces in the damage-caused zone due to corona activity. The ultra-high frequency (UHF) signal generated due to water droplet-initiated corona activity has frequency content in the range of 0.8–1 GHz. The localisation of incipient discharges is demonstrated by using the non-iterative technique and the cross recurrence plot (CRP) technique is used to estimate the time difference of arrival (TDOA) of UHF signals generated due to water droplet-initiated discharge. Laser-induced breakdown spectroscopy (LIBS) depicts the elemental composition and reveals the difference in plasma temperature and threshold fluence between all the test specimens. In short, the performance of ion trapping particle filled epoxy nanocomposite performance is found to be best followed by titania filled epoxy nanocomposite and the base epoxy resin.

References

    1. 1)
      • 1. Iyer, G., Gorur, R.S., Richert, R., et al: ‘Dielectric properties of epoxy based nanocomposites for high voltage insulation’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (3), pp. 659666.
    2. 2)
      • 2. Lia, H., Du, B., Jin, L., et al: ‘Effects of non-linear conductivity on charge trapping and de-trapping behaviours in epoxy/SiC composites under DC stress’, IET Sci. Meas. Technol., 2017, 12, (21), pp. 8389.
    3. 3)
      • 3. Roy, M., Nelson, J.K., MacCrone, R.K., et al: ‘Polymer nanocomposites dielectrics—the role of the interface’, IEEE Trans. Dielectr. Electr. Insul., 2005, 2, (4), pp. 629641.
    4. 4)
      • 4. Iyer, G., Gorur, R.S., Krivda, A.: ‘Understanding electrical discharge endurance of epoxy micro and nano composites through thermal analysis’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (1), pp. 225229.
    5. 5)
      • 5. Tsekmes, I.A, Morshuis, P.H.F., Smit, J.J., et al: ‘Enhancing the thermal and electrical performance of epoxy microcomposites with the addition of nanofillers’, IEEE Electr. Insul. Mag., 2015, 31, (3), pp. 3242.
    6. 6)
      • 6. Singha, S., Thomas, M.J.: ‘Dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 1223.
    7. 7)
      • 7. Kochetov, R., Andritsch, T., Morshuis, P.H.F., et al: ‘Anomalous behaviour of the dielectric spectroscopy response of nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 107117.
    8. 8)
      • 8. Thabet, A.: ‘Theoretical analysis for effects of nanoparticles on dielectric characterization of electrical industrial materials’, Electr. Eng. (ELEN) J., 2016, 99, (2), pp. 487493.
    9. 9)
      • 9. Nazemi, M.H., Hinrichsen, V.: ‘Experimental investigations on partial discharge characteristics of water droplets on polymeric insulating surfaces at AC DC and combined AC–DC voltages’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 22612270.
    10. 10)
      • 10. Sarathi, R., Harsha, V.S., Vasa, N. J., et al: ‘Water droplet initiated discharges on epoxy nano composites under DC voltages’, IEEE trans.Dielectr. Electr. Insul., 2016, 23, (3), pp. 17431752.
    11. 11)
      • 11. Tanaka, T., Imai, T.: ‘Advanced nanodilectrics: fundamentals and applications’ (CRC Press, Florida, 2017), pp. 244258.
    12. 12)
      • 12. Imai, T., Sawa, F., Ozaki, T., et al: ‘Influence of temperature on mechanical and insulation properties of epoxy-layered silicate nanocomposite’, IEEE Trans. Dielectr. Electr. Insul, 2006, 13, (2), pp. 445452.
    13. 13)
      • 13. Kozako, M., Kido, R., Imai, T., et al: ‘Surface roughness change of epoxy/TiO2 nanocomposite due to partial discharges’. Proc. 2005 Int. Symp. on Electrical Insulating Material, Kitakyushu, Japan, 2005, vol. 3, pp. 661664.
    14. 14)
      • 14. Wu, H., Liu, C., Chen, J., et al: ‘Preparation and characterization of chitosan/α-zirconium phosphate nanocomposite films’, Polym. Int., 2010, 59, (7), pp. 923930.
    15. 15)
      • 15. Du, B.X., Jhang, J.W., Gao, Y.: ‘Effects of TiO2 particles on surface charge of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 755762.
    16. 16)
      • 16. Jiandong, W., Wenhui, L., Yu, Z., et al: ‘Effect of nano additive size on the space charge behaviour in LDPE/SiO2 nanocomposite’. Int. Conf. on Solid Dielectrics, Potsdam, Germany, 2010, pp. 14.
    17. 17)
      • 17. Maity, P., Basu, S., Parameswaran, V., et al: ‘Degradation of polymer dielectrics with nanometric metal-oxide fillers due to surface discharges’, IEEE Trans. Dielectr. Electr. Insul, 2008, 15, pp. 5262.
    18. 18)
      • 18. Alexander, D.R., Poulain, D.E., Ahmad, M.U., et al: ‘Environmental monitoring of soil contaminated with heavy metals using Laser-induced breakdown spectroscopy’. Geoscience and Remote Sensing Symp., Palmerston North, New Zealand, 1994, Vol. 2, pp. 767769.
    19. 19)
      • 19. DeLucia, F.C., Samuels, A. C., Harmon, R. S., et al: ‘Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection’, IEEE Sens. J., 2005, 5, (4), pp. 681689.
    20. 20)
      • 20. Lapes, J.S., Jayaram, S.H., Cherney, E.A.: ‘A study of partial discharges from water droplets on a silicone rubber insulating surface’, IEEE Trans. Dielectr. Electr. Insul., 2001, 8, (2), pp. 262268.
    21. 21)
      • 21. Murthy, V.S., Gupta, S., Mohanta, D.K.: ‘Digital image processing approach using combined wavelet hidden Markov model for well-being analysis of insulators’, IET Image Process., 2011, 5, (2), pp. 171183.
    22. 22)
      • 22. Bot, O.L., Gervaise, C., Mars, J.: ‘Time-difference-of-arrival estimation based on cross recurrence plots, with application to underwater acoustic signals’, in Webber, C.L., Ioana, C., Marwan, N. (Ed.): ‘Recurrence plots and their quantifications: expanding horizons (Springer Proceedings in Physics 180)’(Springer, 2016), pp. 265288.
    23. 23)
      • 23. Imai, T., Sawa, F., Ozaki, T., et al: ‘Evaluation of insulation properties of epoxy resin with nano-scale silica particles’. Proc. ISEIM, Kitakyushu, Japan, 2005, Vol. 1, pp. 239242.
    24. 24)
      • 24. IEC 60 112.: ‘Recommended method for determining the comparative tracking index of solid insulating material under the moist condition’, 2nd Edition, 1972.
    25. 25)
      • 25. Zbilut, P., Giuliani, A., Webber, C.L., et al: ‘Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification’, Phys. Lett. A, 1998, 246, (1–2), pp. 122128.
    26. 26)
      • 26. Marwan, N., Romano, M.C., Thiel, M., et al: ‘Recurrence plots for the analysis of complex systems’, Phys. Rep., 2007, 438, (5–6), pp. 237329.
    27. 27)
      • 27. Packard, N.H., Crutchfield, J.P., Farmer, J.D., et al: ‘Geometry from a time series’, Phys. Rev. Lett., 1980, 45, (9), pp. 712716.
    28. 28)
      • 28. Bot, O.L., Gervaise, C., Mars, J.I., et al: ‘Similarity matrix analysis and divergence measures for statistical detection of unknown deterministic signals hidden in additive noise’, Phys. Lett. A, 2015, 379, (40–41), pp. 25972609.
    29. 29)
      • 29. Kundu, P., Kishore, N.K., Sinha, A.K.: ‘A non-iterative partial discharge source location method for transformers employing acoustic emission techniques’, Appl. Acoust., 2009, 70, (11–12), pp. 13781383.
    30. 30)
      • 30. Antony, D., Punekar, G.S.: ‘Identification of invalid time-delay-groups using discriminant and Jacobian-determinant in acoustic emission PD source localisation’, IET Sci., Meas. Technol., 2017, 11, (3), pp. 315321.
    31. 31)
      • 31. Liu, Y., Zhou, W., Li, P., et al: ‘An ultrahigh frequency partial discharge signal de-noising method based on a generalized S-transform and module time-frequency matrix’, Sensors, 2016, 16, (6), p. 941.
    32. 32)
      • 32. Zhang, T., Luo, L., Hou, H., et al: ‘UHF signal model parameters identification and reconstruction for partial discharge in substation’. Int. Conf. on Condition Monitoring and Diagnosis (CMD), Xiʼan, China, 2016, pp. 242245.
    33. 33)
      • 33. Sjöstedt, H., Gubanski, S.M., Serdyuk, Y.V.: Charging characteristics of EPDM and silicone rubbers deduced from surface potential measurements’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, 3 pp. 696703.
    34. 34)
      • 34. Phillips, A.J., Billings, R.H., Schneider, H.M.: ‘Water drop corona effects on full-scale 500 kV non-ceramic insulators’, IEEE Trans. PWD, 1999, 14, (1), pp. 9991020.
    35. 35)
      • 35. Molinié, P., Goldman, M., Gatellet, J.: ‘Surface potential decay on corona-charged epoxy samples due to polarization processes’, J. Phys. D, Appl. Phys., 1995, 28, (8), pp. 16011610.
    36. 36)
      • 36. Kumara, S., Ma, B., Serdyuk, Y.V., et al: ‘Surface charge decay on HTV silicone rubber: effect of material treatment by corona discharges’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (6), pp. 21892195.
    37. 37)
      • 37. Meyer, L.H., Jayaram, S.H., Cherney, E.A.: ‘A novel technique to evaluate the erosion resistance of silicone rubber composites for high voltage outdoor insulation using infrared laser erosion’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (6), pp. 12011208.
    38. 38)
      • 38. Sansonetti, J.E.,, Martin, W.C.: ‘Handbook of basic atomic spectroscopic data’, J. Phys. Chem. Ref. Data, 2005, 34, pp. 15592259.
    39. 39)
      • 39. Zhang, S, Wang, X, He, M., et al: ‘Laser-induced plasma temperature’, Spectrochim. Acta B, At. Spectrosc., 2014, 97, pp. 1333.
    40. 40)
      • 40. Cowpe, J.S., Moorehead, R.D., Moser, D., et al: ‘Hardness determination of bio-ceramics using laser-induced breakdown spectroscopy’, Spectrochim. Acta B, 2011, 66, (3–4), pp. 290294.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5056
Loading

Related content

content/journals/10.1049/iet-smt.2018.5056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address