Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multiple nanoparticles for improvement of thermal and dielectric properties of oil nanofluids

To improve the performance and increase the lifetime of oil-filled transformers, the thermal and dielectric properties of the transformer oil should be enhanced. Recently, nanotechnology was used as an effective science in the field of transformer oil development. In this study, barium titanate (BT) nanoparticles were inserted into the base transformer oil by a concentration of 0.005 g/L as an individual nanofluid sample (INFS). This insertion enhances the heat transfer coefficient by 33% but the breakdown voltage (BDV) was decreased by >10%. To overcome this problem of dielectric properties degradation, other three hybrid nanofluid samples (HNFS) were prepared using three different types of metal oxide (MO) nanoparticles; titania, alumina, and silica. These samples were prepared by adding a concentration 0.01 g/L of MO nanoparticles together with 0.005 g/L of BT nanoparticles into the oil. The thermal and dielectric properties of HNFS were measured to study the behaviour of nanoparticles hybridisation on transformer oil properties. HNFS using titania nanoparticles provided the best composition regarding either BDV or heat transfer coefficient. Dynamic light scattering (DLS) technique was used to evaluate the particle size distribution of hybrid nanoparticles and to clarify the corresponding physical mechanisms behind the obtained enhancement.

References

    1. 1)
      • 19. Weibull, W.: ‘A statistical distribution function of wide applicability’, ASME J. Appl. Mech., 1951, pp. 293297.
    2. 2)
      • 22. Du, Y., Lv, Y., Li, C., et al: ‘Effect of semiconductive nanoparticles on insulating performances of transformer oil’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, pp. 770776.
    3. 3)
      • 16. Ouni, I.B., Chapron, D., Aroui, H., et al: ‘Thermal behavior of high-frequency optical phonons in tetragonal BaTiO3 single crystal’, Appl. Phys. A, 2016, 122, pp. 110, Art. No. 480.
    4. 4)
      • 9. Prasath, R.T.A.R., Roy, N.K., Mahato, S.N., et al: ‘Mineral oil based high permittivity CaCu3Ti4O12 (CCTO) nanofluids for power transformer application’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 23442353.
    5. 5)
      • 4. Shukla, G., Aiyer, H.: ‘Thermal conductivity enhancement of transformer oil using functionalized nanodiamonds’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 21852190.
    6. 6)
      • 15. Du, B., Li, X., Xiao, M.: ‘High thermal conductivity transformer oil filled with BN nanoparticles’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 851858.
    7. 7)
      • 20. Dang, Z., Lin, Y., Xu, H., et al: ‘Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability’, Adv. Funct. Mater., 2008, 18, pp. 15091517.
    8. 8)
      • 7. Segal, V., Hjortsberg, A., Rabinovich, A., et al: ‘AC (60 Hz) and impulse breakdown strength of a colloidal fluid based on transformer oil and magnetite nanoparticles’. IEEE Inter. Symp. on Electr. Insul., Virginia, USA, 1998, pp. 619622.
    9. 9)
      • 10. Emara, M.M., Mansour, D.A., Azmy, A.M.: ‘Mitigating the impact of aging byproducts in transformer oil using TiO2 nanofillers’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (6), pp. 34713480.
    10. 10)
      • 2. Mansour, D.A., Elsaeed, A.M.: ‘Heat transfer properties of transformer oil-based nanofluids filled with Al2O3 nanoparticles’. IEEE Conf. on Power And Energy (PECON), Malaysia, 2014, pp. 123127.
    11. 11)
      • 11. Jin, H., Andritsch, T., Tsekmes, L.A., et al: ‘Properties of mineral oil based silica nanofluids’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (3), pp. 11001108.
    12. 12)
      • 21. Atiya, E.G., Mansour, D.A., Khattab, R.M., et al: ‘Dispersion behavior and breakdown strength of transformer oil filled with TiO2 nanoparticles’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 24632472.
    13. 13)
      • 3. Abd-elhady, A., Ibrahim, M., Taha, T., et al: ‘Dielectric and thermal properties of transformer oil modified by semiconductive CdS quantum dots’, J. Electron. Mater.-Springer Journals, 2016, 16, pp. 47554762.
    14. 14)
      • 17. Bhuiyan, M., Alam, M.M., Momin, M.A., et al: ‘Synthesis and characterization of barium titanate (BaTiO3) nanoparticle’, Int. J. Mater. Mech. Eng., 2012, 1, pp. 2124.
    15. 15)
      • 14. Dong, S., Zheng, L., Zhang, X., et al: ‘A new model for Brownian force and the application to stimulating nanofluid flow’, Microfluid. Nanofluid., 2014, 16, pp. 131139.
    16. 16)
      • 18. Atiya, E.G., Mansour, D.A.: ‘Application of UV/Vis spectroscopy to assess the stability of oil-based nanofluids’. IEEE Conf. on Electr. Insul. and Dielectr, Phenomena, Canada, 2016, pp. 671674.
    17. 17)
      • 8. Mansour, D.A., Elsaeed, A.M., Izzularab, M.A.: ‘The role of interfacial zone in dielectric properties of transformer oil-based nanofluids’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (6), pp. 33643372.
    18. 18)
      • 6. Jin, H., Andritsch, T., Morshuis, P., et al: ‘AC breakdown voltage and viscosity of mineral oil based SiO2 nanofluids’. IEEE Conf. Electr. Insul. Dielectr. Phenom. (CEIDP), Montreal, Canada, 2012, pp. 902905.
    19. 19)
      • 5. Tijerina, J., Narayanan, T., Tiwary, C., et al: ‘Nanodiamond-Based thermal fluids’, ACS Appl. Mater. Interf., 2014, 1, pp. 18.
    20. 20)
      • 13. Jang, S.P., Choi, S.U.S.: ‘Effect of various parameters on nanofluid thermal conductivity’, J. Heat Transfer, 2007, 129, pp. 617623.
    21. 21)
      • 12. Fontes, D., Ribatski, G., Filho, E.: ‘Experimental evaluation of thermal conductivity, viscosity and breakdown voltage AC of nanofluids of carbon nanotubes and diamond in transformer oil’, Diam. Relat. Mater., 2015, 58, pp. 115121.
    22. 22)
      • 1. Timofeeva, E., Moravek, M., Singh, D.: ‘Improving the heat transfer efficiency of synthetic oil with silica nanoparticles’, J. Colloid Interface Sci., 2011, 364, (1), pp. 7179.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2018.5015
Loading

Related content

content/journals/10.1049/iet-smt.2018.5015
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address