access icon free Time-varying magnetic field analysis using an improved meshless method based on interpolating moving least squares

In this study, analysis of 2D time-varying magnetic field using an improved meshless method based on interpolating moving least squares (IMLS) is proposed. In this study, solving the time-domain magnetic field equation in a meshless method carried out by selection of magnetic field intensity as a variable instead of magnetic vector potential which is widely used as a variable. Using this approach, the post-processing process will be fast and the boundary condition is implemented simply. For performance evaluation of the proposed method in eddy current analysis, two other meshless techniques, i.e. moving least squares (MLS) and radial point interpolation method (RPIM) have been considered. The results of improved IMLS are compared with MLS, RPIM and finite element method (FEM) results. Verification of improved meshless results is performed by FEM.

Inspec keywords: least squares approximations; eddy currents; electromagnetism; interpolation; magnetic fields

Other keywords: meshless techniques; magnetic vector potential; interpolating moving least squares; time-varying magnetic field analysis; IMLS; 2D time-varying magnetic field; time-domain magnetic field equation; RPIM; eddy current analysis; magnetic field intensity; boundary condition; post-processing process; improved meshless method; radial point interpolation method

Subjects: Interpolation and function approximation (numerical analysis); Electromagnetic induction

References

    1. 1)
      • 2. Rastkara, S., Zahedib, M., Koroleva, I., et al: ‘A meshfree approach for homogenization of mechanical properties of heterogeneous materials’, Eng. Anal. Bound. Elem., 2017, 75, pp. 7988.
    2. 2)
      • 11. Belytschko, T, L.U., Gu, T.: ‘Element-free Galerkin methods’, Int. J. Numer. Methods Eng., 1994, 37, pp. 229256.
    3. 3)
      • 4. Zehui, L., Wei, H., Fan, Y., et al: ‘A simple and efficient local Petrov-Galerkin meshless method and its application’, Int. J. Appl. Electromagn. Mech., 2013, 44, (1), pp. 115123.
    4. 4)
      • 9. Lancaster, P., Salkauska, K.: ‘Surfaces generated by moving least-squares methods’, Math. Comput., 1981, 37, pp. 141158.
    5. 5)
      • 3. Kumar, V., Drathi, R.: ‘A meshless cracking particles approach for ductile fracture’, KSCE J. Civil Eng., 2016, 20, (6), pp. 25862586.
    6. 6)
      • 16. Arehpanahi, M., Vahedi, O.: ‘Modified weight function with automatic node generation in element-free Galerkin method for magnetic field computation’, IET Sci., Measure. Technol., 2015, 9, (8), pp. 10431049.
    7. 7)
      • 8. Coppoli, E., Mesquita, H., Silva, R.: ‘Induction machines modeling with meshless methods’, IEEE Trans. Magn., 2012, 48, (2), pp. 847850.
    8. 8)
      • 14. Zhou, G., Zhao, W., Xiang, S.: ‘Shape parameter optimization of Gaussian radial basis function using genetic algorithm for natural frequencies of laminated composite plates’, Appl. Mech. Mater., 2015, 709, pp. 153156.
    9. 9)
      • 7. Okuda, H., Nagashima, T., Yagawa, G.: ‘Basic study on element-free Galerkin method (1st report, application to ordinary differential equation) and (2st report, application to two-dimensional potential problems)’, Trans. Jpn Soc. Mech. Eng. A, 1996, 62, (599), pp. 17461753.
    10. 10)
      • 17. Huaiqing, Z., Chunxian, G., Xiangfeng, S., et al: ‘Shape parameter selection for multi-quadrics function method in solving electromagnetic boundary value problems’, COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 2016, 35, (1), pp. 6479.
    11. 11)
      • 13. Cingoski, V., Miyamoto, N., Yamashita, H.: ‘Hybrid element-free Galerkin-finite element method for electro-magnetic field computations’, IEEE Trans. Magn., 2000, 36, (4), pp. 15431547.
    12. 12)
      • 5. Kamranian, M., Dehghan, M., Tatari, M.: ‘An adaptive meshless local Petrov–Galerkin method based on a posteriori error estimation for the boundary layer problems’, Appl. Numer. Math., 2017, 111, pp. 181196.
    13. 13)
      • 1. Rahmani, A., Afshar, H.: ‘Discrete least squares meshless (DLSM) method for simulation of steady state shallow water flows’, Scientia Iranica, 2011, 18, (4), pp. 835845.
    14. 14)
      • 10. Nayroles, B., Touzot, G., Villon, P.: ‘Generalizing the finite element method: diffuse approximation and diffuse elements’, Comput. Mech., 1992, 10, pp. 307318.
    15. 15)
      • 6. Trask, N., Maxey, M., Xiaozhe, H.: ‘Compact moving least squares: an optimization framework for generating high-order compact meshless discretizations’, J. Comput. Phys., 2016, 326, pp. 596611.
    16. 16)
      • 12. Belytschko, T, L.U., Gu, T.: ‘A new implementation of the element free Galerkin method’, Comput. Methods Appl. Mech. Eng., 1994, 113, pp. 397414.
    17. 17)
      • 15. Yoshikazu, T., Sho, W., Takuya, O.: ‘Study of eddy current analysis by a meshless method using RPIM’, IEEE Trans. Magn., 2015, 51, (3), pp. 14.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0557
Loading

Related content

content/journals/10.1049/iet-smt.2017.0557
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading