Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Time-domain virtual EMI receiver model algorithm for corona-originated electromagnetic interference of dc transmission line

A time-domain virtual electromagnetic interference (EMI) receiver model algorithm for corona-originated EMI of dc transmission line is proposed. The presented model is based on short-time fast Fourier transform (FFT) and digital quasi-peak, peak and average detector algorithms together with the measured corona current. The virtual EMI receiver model algorithm is verified by comparing with measurement results of conducted interference of the three regular waveforms. The influences of computational accuracy on the conducted interference are discussed. Through utilising the laboratory-scale corona cage to generate corona current, the 0.5 MHz excitation current is calculated by using short-time FFT and excitation function theory. The measured and computational average value, root mean square value, quasi-peak value and peak value of EMI receiver response to corona current sequence are obtained. It is found that computations of radio interference have a good agreement with the measured results.

References

    1. 1)
      • 18. Krug, F., Russer, P.: ‘Quasi-peak detector model for a time-domain measurement system’, IEEE Trans. Electromagn. Compat., 2005, 47, (2), pp. 320326.
    2. 2)
      • 14. Harrold, T.: ‘The spectrum analyzer applied to the measurement of EHVPower line radio noise’, IEEE Trans. Power Appar. Syst., 1971, PAS-90, (4), pp. 18371847.
    3. 3)
      • 19. Wang, W.Z., Guo, J., Zhang, B., et al: ‘Calibration method of radio interference measurement result in high-voltage side of corona cage’, High Volt. Eng., 2014, 40, (9), pp. 28552861.
    4. 4)
      • 7. Gary, C.H.: ‘The theory of the excitation function: a demonstration of its physical meaning’, IEEE Trans. Power Appar. Syst., 1972, PAS-91, (1), pp. 305310.
    5. 5)
      • 5. CISPR Standard 5049: ‘Radio interference characteristics of overhead power lines and high voltage equipment’, 1994.
    6. 6)
      • 1. Maruvada, P.S.: ‘Corona performance of high voltage transmission lines’ (Research Studies Press, Baldock, UK, 2000, 1st edn.).
    7. 7)
      • 16. Braun, S., Donauer, T., Russer, P.: ‘A real-time time-domain EMI measurement system for full-compliance measurements according to CISPR 16–1–1’, IEEE Trans. Electromagn. Compat., 2008, 50, (2), pp. 259267.
    8. 8)
      • 3. He, W.L., He, J.J., Wan, B.Q., et al: ‘Radio interference excitation function of conductor bundles based on cage test results and comparison with long-term data’, IET Sci. Measur. Technol., 2015, 9, (5), pp. 621627.
    9. 9)
      • 13. Hirsch, F.W., Schaffer, E.: ‘Progress report on the HVDC test line of the 400 kV-forschungsgemeinschaft: corona losses and radio interference’, IEEE Trans. Power Appar. Syst., 1969, PAS-88, (7), pp. 10611069.
    10. 10)
      • 10. Moreau, M.R., Gary, C.H.: ‘Predetermination of the interference level for high voltage transmission lines II-field calculating method’, IEEE Trans. Power Appar. Syst., 1972, PAS-91, (1), pp. 292304.
    11. 11)
      • 15. Krug, F., Russer, P.: ‘The time-domain electromagnetic interference measurement system’, IEEE Trans. Electromagn. Compat., 2003, 45, (2), pp. 330338.
    12. 12)
      • 4. Qiao, J., Zou, J., Li, B.L.: ‘Calculation of the ionised field and the corona losses of high-voltage direct current transmission lines using a finite-difference-based flux tracing method’, IET Gener. Transm. Distrib., 2015, 9, (4), pp. 348357.
    13. 13)
      • 9. Perz, M.C.: ‘Propagation analysis of HF currents and voltages on lossy power lines’, IEEE Trans. Power Appar. Syst., 1973, PAS-92, (6), pp. 20322043.
    14. 14)
      • 8. Otto, A.J., Reader, H.C.: ‘Wideband and narrowband HVDC conductor corona test methods for radio noise prediction’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 29502957.
    15. 15)
      • 2. He, W.L., He, J.J., Wan, B.Q., et al: ‘Influence of altitude on radio interference level of AC power lines based on corona cage’, IET Sci. Measur. Technol., 2015, 9, (7), pp. 861865.
    16. 16)
      • 6. CISPR Standard 16: ‘Specification for radio disturbance and immunity measuring apparatus and method’, 2006.
    17. 17)
      • 11. Nakano, Y., Sunaga, Y.: ‘Availability of corona cage for predicting radio interference generated from HVDC transmission line’, IEEE Trans. Power Deliv., 1990, 5, (3), pp. 14361442.
    18. 18)
      • 12. Tanabe, K.: ‘Hum noise performance of 6, 8, 10 conductor bundles for 1000 kV transmission lines at the Akagi test site: a comparative study with cage data’, IEEE Trans. Power Deliv., 1991, 6, (4), pp. 17991804.
    19. 19)
      • 20. Olsen, R.G., Young, J.L., Chang, D.C.: ‘Electromagnetic wave propagation on a thin wire above earth’, IEEE Trans. Antennas. Propag., 2000, 48, (9), pp. 14131419.
    20. 20)
      • 17. Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: ‘Signal & system’ (Prentice-Hall Press, New Jersey, 1997).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0495
Loading

Related content

content/journals/10.1049/iet-smt.2017.0495
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address