access icon free Estimation of paper-moisture in transformer insulation employing dielectric spectroscopy data

Accurate estimation of paper-moisture in transformer insulation is necessary for ensuring their satisfactory operation. Paper-moisture in transformer insulation can be estimated from their corresponding transfer function zero obtained from insulation model that is parameterised using polarisation depolarisation current data. However, paper-moisture estimated using transfer function zero is less reliable for a new unit. Considering the fact, a method is proposed in this work that can estimate the paper-moisture with greater accuracy. Instead of using only transfer function zero, tanδ has also been employed for estimating the paper-moisture. In order to investigate the effectiveness, the proposed technique has first been applied on several test samples in the laboratory. The proposed technique is then applied on few power transformers to estimate their paper-moisture. Results obtained from the experiment show that this technique can estimate the paper-moisture content within test samples and power transformer insulation with better accuracy.

Inspec keywords: power transformer insulation; moisture measurement; power transformer testing; paper

Other keywords: polarisation depolarisation current data; dielectric spectroscopy data; power transformer insulation estimation; paper-moisture estimation; transfer function zero

Subjects: Organic insulation; Humidity measurement; Transformers and reactors; Hygrometry

References

    1. 1)
      • 16. Shayegani, A.A., Gockenbach, E., Borsi, H., et al: ‘Investigation on the transformation of time domain spectroscopy data to frequency domain data for impregnated pressboard to reduce measurement time’, in ‘Electrical engineering’ (Springer-Verlag, Berlin, Heidelberg, 2006), vol. 89, pp. 1120.
    2. 2)
      • 2. Oomen, T.V., Arnold, L.N.: ‘Cellulose insulation materials evaluated by degree of polymerization measurements’. IEEE Proc. 15th Electrical Electronics Insulation Conf., Chicago, IL, USA, 1981.
    3. 3)
      • 9. Zaengl, W.S.: ‘Dielectric spectroscopy in time and frequency domain for power equipment- theoretical considerations’, IEEE Electr. Insul. Mag., 2003, 19, (5), pp. 519.
    4. 4)
      • 5. Saha, T.K., Purkait, P.: ‘Investigation of polarization and depolarization current measurements for the assessment of oil-paper insulation of aged transformers’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (1), pp. 144154.
    5. 5)
      • 4. Linhjell, D., Lundgaard, L., Gafvert, U.: ‘Dielectric response of mineral oil impregnated cellulose and the impact of aging’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (1), pp. 156169.
    6. 6)
      • 13. Baral, A., Chakravorti, S.: ‘Condition assessment of cellulosic part in power transformer insulation using transfer function zero of modified Debye model’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (5), pp. 20282036.
    7. 7)
      • 19. Pradhan, A.K., Chatterjee, B., Chakravorti, S.: ‘Estimation of paper moisture content based on dielectric dissipation factor of oil-paper insulation under non-sinusoidal excitations’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 822830.
    8. 8)
      • 26. Gubanski, S.M., Boss, P., Csépes, G., et al: ‘Dielectric response methods for diagnostics of power transformers’, Report of the TF D1.01.09, CIGRE, 2002.
    9. 9)
      • 25. Chatterjee, B., Dey, D., Chakravorti, S.: ‘Implementation of integrated, portable transformer condition monitoring instrument in the classroom and on site’, IEEE Trans. Educ., 2010, 53, (3), pp. 484489.
    10. 10)
      • 10. Baral, A., Chakravorti, S.: ‘A modified Maxwell model for characterization of relaxation processes within insulation system having non-uniform aging due to temperature gradient’, IEEE Trans. Dielectr. Electr. Insul, 2013, 20, (2), pp. 524534.
    11. 11)
      • 17. Saha, T.K., Purkait, P.: ‘Understanding the impacts of moisture and thermal ageing on transformers insulation by dielectric response and molecular weight measurements’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (2), pp. 568582.
    12. 12)
      • 22. Sokolov, V.: (Convenor), Report of CIGRE Working Group A2.30 ‘Moisture Equilibrium and Moisture Migration within Transformer Insulation Systems’, 2008.
    13. 13)
      • 6. Seytashmehr, A., Fofana, I., Eichler, C., et al: ‘Dielectric spectroscopic measurements on transformer oil-paper insulation under controlled laboratory conditions’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (4), pp. 11001111.
    14. 14)
      • 15. Rouse, T.O.: ‘Mineral insulating oil in transformers’, IEEE Electr. Insul. Mag., 1998, 14, (3), pp. 616.
    15. 15)
      • 7. Saha, T.K., Purkait, P., Müller, F.: ‘Deriving an equivalent circuit of transformers insulation for understanding the dielectric response measurements’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 149157.
    16. 16)
      • 21. Zaengl, W.S.: ‘Applications of dielectric spectroscopy in time and frequency domain for HV power equipment’, IEEE Electr. Insul. Mag., 2003, 19, (6), pp. 922.
    17. 17)
      • 20. Pradhan, A.K., Koley, C., Chatterjee, B., et al: ‘Determination of optimized slope of triangular excitation for condition assessment of oil-paper insulation by frequency domain spectroscopy’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (3), pp. 13031312.
    18. 18)
      • 18. Fofana, I., Hemmatjou, H., Meghnefi, F., et al: ‘On the frequency domain dielectric response of oil-paper insulation at low temperatures’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (3), pp. 799807.
    19. 19)
      • 12. Baral, A., Chakravorti, S.: ‘Assessment of non-uniform aging of solid dielectric using system poles of a modified Debye model for oil-paper insulation of transformers’, IEEE Trans. Dielectr. Electr. Insul, 2013, 20, (5), pp. 19221933.
    20. 20)
      • 24. Sarkar, S., Sharma, T., Baral, A., et al: ‘An expert system approach for transformer insulation diagnosis combining conventional diagnostic tests and PDC, RVM data’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 882891.
    21. 21)
      • 11. Baral, A., Chakravorti, S.: ‘Prediction of moisture present in cellulosic part of power transformer insulation using transfer function of modified Debye model’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (3), pp. 13681375.
    22. 22)
      • 14. Pradhan, A.K., Chatterjee, B., Chakravorti, S.: ‘Estimation of dielectric dissipation factor of cellulosic parts in oil-paper insulation by frequency domain spectroscopy’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 27202729.
    23. 23)
      • 3. Saha, T.K.: ‘Review of modern diagnostic techniques for assessing insulation condition in aged trans-formers’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (5), pp. 903917.
    24. 24)
      • 1. Shroff, D.H., Stannett, A.W.: ‘A review of paper ageing in power transformers’, IEE Proc. C, Gener. Transm. Distrib., 1985, 132, (6), pp. 312319.
    25. 25)
      • 23. Zaengl, W.S.: ‘Dielectric spectroscopy in time and frequency domain for HV power equipment, part i: theoretical considerations’, IEEE Electr. Insul. Mag., 2003, 19, (5), pp. 519.
    26. 26)
      • 8. Jota, P.R., Islam, S.M., Jota, F.G.: ‘Modeling the polarisation spectrum in composite oil/paper insulation systems’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (2), pp. 145151.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0447
Loading

Related content

content/journals/10.1049/iet-smt.2017.0447
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading