Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Interference-rejecting current measurement method with tunnel magnetoresistive magnetic sensor array

Innovative methods for wide range measurement of electric current remains an active research problem in modern power systems. Conventional methods based on magnetic field readouts have realized non-contact current measurement by interpreting magnetic flux density into electric current, such as Hall effect and Rogowski Coil arrangement. TMR magnetic sensor has spread its application for current measurement due to its miniaturization, low cost, high response frequency and high sensitivity. However, due to the superposition of unwanted magnetic field, the magnetic fieldunder measurement is strongly affected. In this paper, a four-sensor array design is proposed to solve this problem. Transcendental equations, which can not only calculate the current under measurement but also the interference current at random places, are constructed. Numerical simulations, finite element analysis (FEA) of the field and laboratory experiments were performed to verify the proposed method. It is shown that when targeted current is 100 A and interference is 820 A, the largest simulated error is 3.92 × 10−10; when targeted current is 100 A and interference is 1000 A, error with FEA is 2.3796%, when targeted current and interference are both 500 A, experimental error is 4.14%. This verifies the effectiveness of the proposed method.

References

    1. 1)
      • 26. Bazzocchi, R., Manara, A., Rienzo, L.D.: ‘Spatial DFT analysis from magnetic sensor circular array data for measuring a DC current flowing in a rectangular bus-bar’. Instrumentation and Measurement Technology Conf. 2000 Imtc 2000 Proc. IEEE, 2000.
    2. 2)
      • 9. Al, J.G.W.E.: ‘The measurements, instrumentation and sensors hand book’ (CRC Press, Boca Raton, Florida, USA, 1999).
    3. 3)
      • 12. Jedlicska, I., Weiss, R., Weigel, R.: ‘Linearizing the output characteristic of GMR current sensors through hysteresis modeling’, IEEE Trans. Ind. Electron., 2010, 57, (5), pp. 17281734.
    4. 4)
      • 11. Yan, P.T., Fai, T.N.C., Hong, L.R.W.: ‘Extending the GMR current measurement range with a counteracting magnetic field’, Sensors, 2013, 13, (6), p. 8042.
    5. 5)
      • 27. D'Antona, G., Rienzo, L.D., Ottoboni, R., et al: ‘Processing magnetic sensor array data for AC current measurement in multiconductor systems’, IEEE Trans. Instrum. Meas., 2001, 50, (5), pp. 12891295.
    6. 6)
      • 19. Khawaja, A.H., Huang, Q., Lian, L.: ‘Experimental study of tunnel and anisotropic magnetoresistive sensor for power system magnetic field measurement applications’. IEEE Int. Conf. Smart Instrumentation, Measurement and Applications, 2016.
    7. 7)
      • 29. Cheng, D.K.: ‘Field and wave electromagnetics’ (Addison Wesley, Reading, Massachusetts, 1983).
    8. 8)
      • 15. Lee, W.Y., Park, C.M., York, B.R., et al: ‘Magnetoresistive sensor with high TMR and low RA’. US Patent US20090257152A1, 2009.
    9. 9)
      • 22. Weiss, R., Makuch, R., Itzke, A., et al: ‘Crosstalk in circular arrays of magnetic sensors for current measurement’, IEEE Trans. Ind. Electron., 2017, PP, (99), p. 1.
    10. 10)
      • 16. Khawaja, A.H., Huang, Q.: ‘Characteristic estimation of high voltage transmission line conductors with simultaneous magnetic field and current measurements’. IEEE Int. Instrumentation and Measurement Technology Conf. IEEE, Taipei, Taiwan, 2016.
    11. 11)
      • 2. Bhadra, R., Acharyya, A.: ‘A proposed DC line current measurement technique based on current induced magnetic field sensing using N-channel enhancement-type MOSFET’. Michael Faraday IET Int. Summit IET, Kolkata, India, 2015.
    12. 12)
      • 7. Primdahl, F.: ‘The fluxgate magnetometer’, J. Phys. E, Sci. Instrum., 2001, 12, (4), p. 241.
    13. 13)
      • 21. Scoville, J.T., Petersen, P.I.: ‘A low-cost multiple hall probe current transducer’, Rev. Sci. Instrum., 1991, 62, (3), pp. 755760.
    14. 14)
      • 10. Reeg, H., Schwickert, M.: ‘Sensor studies for DC current transformer application’. Int. Beam Instrumentation Conf., Monterey, CA, USA, 2014.
    15. 15)
      • 24. Bazzocchi, R., Rienzo, L.D.: ‘Interference rejection algorithm for current measurement using magnetic sensor arrays’, Sens. Actuators A, Phys., 2000, 85, (1), pp. 3841.
    16. 16)
      • 23. Sun, X., Lai, P.T., Pong, P.W.T.: ‘A novel bar-shaped magnetic shielding for magnetoresistive sensors in current measurement on printed circuit boards’, IEEE Trans. Magn., 2014, 50, (1), pp. 14.
    17. 17)
      • 1. Amin, S.M., Wollenberg, B.F.: ‘Toward a smart grid: power delivery for the 21st century’, IEEE Power Energy Mag., 2005, 3, (5), pp. 3441.
    18. 18)
      • 18. Khawaja, A.H., Huang, Q., Li, L., et al: ‘Estimation of current and sag in overhead power transmission lines with optimized magnetic field sensor array placement’, IEEE Trans. Magn., 2017, PP, (99), p. 1.
    19. 19)
      • 4. Wieckowski, T.W.: ‘Electric-field and magnetic-field sensors’, Electron. Lett., 1993, 29, (11), pp. 968970.
    20. 20)
      • 25. Rienzo, L.D., Bazzocchi, R., Manara, A.: ‘Circular arrays of magnetic sensors for current measurement’, IEEE Trans. Instrum. Meas., 2001, 50, (5), pp. 10931096.
    21. 21)
      • 5. Cataliotti, A., Cara, D.D., Emanuel, A.E., et al: ‘Current transformers effects on the measurement of harmonic active power in LV and MV networks’, IEEE Trans. Power Deliv., 2010, 26, (1), pp. 360368.
    22. 22)
      • 20. Chan, J.Y.C., Tse, N.C.F., Lai, L.L.: ‘A coreless electric current sensor with circular conductor positioning calibration’, IEEE Trans. Instrum. Meas., 2013, 62, (11), pp. 29222928.
    23. 23)
      • 17. Khawaja, A.H., Huang, Q.: ‘Estimating sag and wind-induced motion of overhead power lines with current and magnetic-flux density measurements’, IEEE Trans. Instrum. Meas., 2017, PP, (99), pp. 113.
    24. 24)
      • 28. Tsai, Y.P., Chen, K.L., Chen, N.: ‘Design of a Hall effect current microsensor for power networks’, IEEE Trans. Smart Grid, 2011, 2, (3), pp. 421427.
    25. 25)
      • 13. Popovic, R.S., Drljaca, P.M., Schott, C.: ‘Bridging the gap between AMR, GMR, and hall magnetic sensors’. Int. Conf. Microelectronics, 2002.
    26. 26)
      • 14. Quandt, E., Lohndorf, M., Ludwig, A., et al: ‘TMR sensor’. USPatent US7234360B2, 2007.
    27. 27)
      • 3. Williamson, S., Ralph, J.W.: ‘Finite-element analysis for nonlinear magnetic field problems with complex current sources’, IEE Proc. A, – Phys. Sci., Meas. Instrum. Manage. Educ. Rev., 1982, 129, (6), pp. 391395.
    28. 28)
      • 6. Ripka, P., Kejik, P., Kaspar, P., et al: ‘Precise DC current sensors’. Instrumentation and Measurement Technology Conf. 1996 IMTC-96. Conf. Proc. ‘Quality Measurements: The Indispensable Bridge between Theory and Reality’, 1996.
    29. 29)
      • 8. Snoeij, M.F., Schaffer, V., Udayashankar, S., et al: ‘Integrated fluxgate magnetometer for use in isolated current sensing’, IEEE J. Solid-State Circuits, 2016, 51, (7), pp. 16841694.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0433
Loading

Related content

content/journals/10.1049/iet-smt.2017.0433
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address