access icon free Analysis of dual-gate high electron mobility transistor using an unconditionally stable time domain method

A dual-gate aluminium gallium arsenide (GaAs)/GaAs pseudomorphic high electron mobility transistor is analysed based on the distributed modelling approach, wherein the transistor is considered as an active multi-conductor transmission line. Discretisation of the governing matrix Telegrapher's equation is carried out using the implicit Crank–Nicolson-finite-difference time-domain (CN-FDTD) method. The results obtained from the proposed method are compared with the results of the conventional leap-frog (LF) FDTD scheme. It is observed that the unconditionally stable CN method is in good agreement with the LF method even by increasing the time step size by the factor of 5000, leading to a dramatic decrease in the central processing unit time.

Inspec keywords: semiconductor device models; gallium arsenide; III-V semiconductors; multiconductor transmission lines; finite difference time-domain analysis; high electron mobility transistors; matrix algebra

Other keywords: implicit Crank–Nicolson-finite-difference time-domain method; unconditionally stable CN method; central processing unit time; distributed modelling approach; CN-FDTD method; conventional leap-frog FDTD scheme; LF FDTD scheme; time step size; AlGaAs; efficient time-domain analysis; active multiconductor transmission line; dual-gate aluminium gallium arsenide pseudomorphic high electron mobility transistor; governing matrix telegrapher equation

Subjects: Other field effect devices; Linear algebra (numerical analysis); Semiconductor device modelling, equivalent circuits, design and testing

References

    1. 1)
      • 28. Inan, U.S., Marshal, R.A.: ‘Numerical electromagnetics’ (Cambridge University Press, Cambridge, UK, 2011).
    2. 2)
      • 3. El-Ghazaly, S.M., Itoh, T.: ‘Traveling-wave inverted-gate field-effect transistors: concept, analysis, and potential’, IEEE Trans. Microw. Theory Tech., 1989, 37, (6), pp. 10271032.
    3. 3)
      • 30. Guilin, S., Trueman, C.W.: ‘Efficient implementations of the Crank–Nicolson scheme for the finite-difference time-domain method’, IEEE Trans. Microw. Theory Tech., 2006, 54, (5), pp. 22752284.
    4. 4)
      • 24. Afrooz, K., Abdipour, A., Tavakoli, A., et al: ‘Time domain analysis of active transmission line using FDTD techniques (application to microwave/mm-wave transistors)’, Prog. Electromagn. Res, 2007, 77, pp. 309328.
    5. 5)
      • 7. Chen, Y.K., Wang, G.W., Radulescu, D.C., et al: ‘Comparisons of microwave performance between single-gate and dual-gate MODFETs’, IEEE Electron Device Lett., 1988, 9, (2), pp. 5961.
    6. 6)
      • 11. Denninghoff, D.J., Dasgupta, S., Lu, J., et al: ‘Design of high-aspect-ratio T-gates on N-polar GaN/AlGaN MIS-HEMTs for high fmax’, IEEE Electron Device Lett., 2012, 33, (6), pp. 785787.
    7. 7)
      • 34. Garcia, S.G., Tae-Woo, L., Hagness, S.C.: ‘On the accuracy of the ADI-FDTD method’, IEEE Antennas Wirel. Propag. Lett., 2002, 1, pp. 3134.
    8. 8)
      • 42. Kantartzis, N.V., Tsiboukis, T.D.: ‘Modern EMC analysis techniques’ (Morgan and Claypool Publishers, San Rafael, USA, 2008).
    9. 9)
      • 17. Abdipour, A., Pacaud, A.: ‘Complete sliced model of microwave FET's and comparison with lumped model and experimental results’, IEEE Trans. Microw. Theory Tech., 1996, 44, (1), pp. 49.
    10. 10)
      • 35. Lee, J., Fornberg, B.: ‘Some unconditionally stable time stepping methods for the 3D Maxwell's equations’, J. Comput. Appl. Math., 2004, 166, (2), pp. 497523.
    11. 11)
      • 32. Honarbakhsh, B., Asadi, S.: ‘Analysis of multiconductor transmission lines using the CN-FDTD method’, IEEE Trans. Electromagn. Compat., 2017, 59, (1), pp. 184192.
    12. 12)
      • 10. Gyan, P., Anuj, K: ‘High electron mobility transistor (HEMT)’, Int. J. Sci. Res. Eng. Technol., 2012, 1, (1), pp. 043046.
    13. 13)
      • 15. Mirzavand, R., Abdipour, A., Moradi, G., et al: ‘Full-wave semiconductor devices simulation using adi-FDTD method’, Prog. Electromagn. Res. M, 2010, 11, pp. 191202.
    14. 14)
      • 9. Cui, L., Wang, Q., Wang, X.L., et al: ‘A novel multi-finger gate structure of AlGaN/GaN high electron mobility transistor’, Chin. Phys. Lett., 2015, 32, (5), p. 58501.
    15. 15)
      • 25. Afrooz, K., Abdipour, A., Tavakoli, A., et al: ‘Time-domain analysis of lossy active transmission lines using FDTD method’, AEU-Int. J. Electron. Commun., 2009, 63, (3), pp. 168178.
    16. 16)
      • 16. Mirzavand, R., Abdipour, A., Moradi, G., et al: ‘Full-wave semiconductor devices simulation using meshless and finite-difference time-domain approaches’, IET Microw. Antennas Propag., 2011, 5, (6), pp. 685691.
    17. 17)
      • 38. Huang, J.C., Saledas, P., Wendler, J., et al: ‘A double-recessed Al/sub 0.24/GaAs/In/sub 0.16/GaAs pseudomorphic HEMT for Ka- and Q-band power applications’, IEEE Electron Device Lett., 1993, 14, (9), pp. 456458.
    18. 18)
      • 26. Afrooz, K.: ‘Time domain analysis of field effect transistors using unconditionally stable finite difference method’, IET Sci. Meas. Technol., 2016, 10, (7), pp. 686692.
    19. 19)
      • 31. Yang, Y., Chen, R.S., Wang, D.X., et al: ‘Unconditionally stable Crank–Nicolson finite-different time-domain method for simulation of three-dimensional microwave circuits’, IET Microw. Antennas Propag., 2007, 1, (4), pp. 937942.
    20. 20)
      • 43. Pozar, D.M.: ‘Microwave engineering’ (Wiley, New York, 1998, 2nd edn.).
    21. 21)
      • 4. Asadi, S., Yagoub, M.: ‘Efficient time-domain signal and noise FET models for millimetre-wave applications’, J. Electromagn. Anal. Appl., 2013, 5, (1), pp. 2331.
    22. 22)
      • 39. Steeb, W., Shi, T.K.: ‘Matrix calculus and Kronecker product with applications and C++ programs’ (World Scientific Publishing Co., Singapore, 1997).
    23. 23)
      • 23. Aliakbari, H., Abdipour, A., Mirzavand, R.: ‘Accurate time-domain modeling of multi-finger pHEMT transistor based on transmission line theory’, AEU-Int. J. Electron. Commun., 2015, 69, (1), pp. 215225.
    24. 24)
      • 2. El-Ghazaly, S., Itoh, T.: ‘Inverted-gate field-effect transistors: novel high-frequency structures’, IEEE Trans. Electron Devices, 1988, 35, (7), pp. 810817.
    25. 25)
      • 33. Fenghua, Z., Zhizhang, C., Jiazong, Z.: ‘Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method’, IEEE Trans. Microw. Theory Tech., 2000, 48, (9), pp. 15501558.
    26. 26)
      • 27. Asadi, S., Honarbakhsh, B.: ‘Linear analysis of high-frequency field-effect transistors using the CN-FDTD method’, IEEE Trans. Microw. Theory Tech., 2017, PP, (99), pp. 19.
    27. 27)
      • 18. Waliullah, M., El-Ghazaly, S.M., Goodnick, S.: ‘Large-signal circuit-based time domain analysis of high frequency devices including distributed effects’. 2002 IEEE MTT-S Int. Microwave Symp. Digest (Cat. No. 02CH37278), Seattle, WA, 2002, vol. 3, pp. 21452148.
    28. 28)
      • 14. Movahhedi, M., Abdipour, A., Dehghan, M.: ‘Accelerating the transient simulation of semiconductor devices using filter-bank transforms’, Int. J. Numer. Model., Electron. Netw. Devices Fields, 2006, 19, (1), pp. 4767.
    29. 29)
      • 22. Gaoua, S., Asadi, S., Yagoub, M.C.E., et al: ‘CAD tools for efficient RF/microwave transistor modeling and circuit design’, Analog Integr. Circuits Signal Process., 2010, 63, (1), pp. 5970.
    30. 30)
      • 36. Shibayama, J., Muraki, M., Yamauchi, J., et al: ‘Efficient implicit FDTD algorithm based on locally one-dimensional scheme’, Electron. Lett., 2005, 41, (19), pp. 10461047.
    31. 31)
      • 37. Liu, Q.F., Chen, Z., Yin, W.Y.: ‘An arbitrary-order LOD-FDTD method and its stability and numerical dispersion’, IEEE Trans. Antennas Propag., 2009, 57, (8), pp. 24092417.
    32. 32)
      • 1. Yuce, M.R., Keong, H.C., Chae, M.S.: ‘Wideband communication for implantable and wearable systems’, IEEE Trans. Microw. Theory Tech., 2009, 57, (10), pp. 25972604.
    33. 33)
      • 12. Alsunaidi, M.A., Imtiaz, S.M.S., El-Ghazaly, S.M.: ‘Electromagnetic wave effects on microwave transistors using a full-wave time-domain model’, IEEE Trans. Microw. Theory Tech., 1996, 44, (6), pp. 799808.
    34. 34)
      • 29. Thomas, J.W.: ‘Numerical partial differential equations: finite difference methods’ (Springer-Verlag, New York, 1998).
    35. 35)
      • 21. Daneshmandian, F., Abdipour, A., Mirzavand, R.: ‘A three-conductor transmission line model for MOS transistors’, Appl. Comput. Electromagn. Soc. J., 2015, 30, (6), pp. 670676.
    36. 36)
      • 8. Deal, W.R., Biedenbender, M., Liu, P.H., et al: ‘Design and analysis of broadband dual-gate balanced low-noise amplifiers’, IEEE J. Solid-State Circuits, 2007, 42, (10), pp. 21072115.
    37. 37)
      • 5. Saint, K., Saint, J.: ‘IC mask design: essential layout techniques’ (McGraw-Hill, New York, 2002).
    38. 38)
      • 6. Niknejad, A., Hashemi, H.: ‘mm-wave silicon technology: 60 GHz and beyond’ (Springer, New York, 2008).
    39. 39)
      • 41. Mondal, J.P.: ‘Distributed scaling approach of MESFETs and its comparison with the lumped-element approach’, IEEE Trans. Microw. Theory Tech., 1989, 37, (7), pp. 10851090.
    40. 40)
      • 40. Taflove, A.: ‘Computational electrodynamics: the finite-difference time-domain method’ (Artech House, Norwood, MA, 1995).
    41. 41)
      • 13. Hussein, Y.A., El-Ghazaly, S.M.: ‘Modeling and optimization of microwave devices and circuits using genetic algorithms’, IEEE Trans. Microw. Theory Tech., 2004, 52, (1), pp. 329336.
    42. 42)
      • 20. Afrooz, K., Abdipour, A., Tavakoli, A., et al: ‘Nonlinear and fully distributed field effect transistor modelling procedure using time-domain method’, IET Microw. Antennas Propag., 2008, 2, (8), pp. 886897.
    43. 43)
      • 19. Taeb, A., Abdipour, A., Mohammadi, A.: ‘Modeling and analysis of a nonlinear fully distributed FET using FDTD technique’, AEU-Int. J. Electron. Commun., 2007, 61, (7), pp. 444452.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0398
Loading

Related content

content/journals/10.1049/iet-smt.2017.0398
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading