© The Institution of Engineering and Technology
Full text loading...
/deliver/fulltext/iet-smt/12/5/IET-SMT.2017.0383.html;jsessionid=w4dg3eq0ianl.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-smt.2017.0383&mimeType=html&fmt=ahah
References
-
-
1)
-
27. Meng, Y., Gao, S., Zhong, Y., et al: ‘Covariance matching based adaptive unscented Kalman filter for direct filtering in INS/GNSS integration’, Acta Astronaut., 2016, 120, pp. 171–181.
-
2)
-
29. Godwin, A., Agnew, M., Stevenson, J.: ‘Accuracy of inertial motion sensors in static, quasistatic, and complex dynamic motion’, J. Biomech. Eng., 2009, 131, pp. 1145011–1145015.
-
3)
-
22. Shuster, M. D.: ‘Filter QUEST or REQUEST’, J. Guid. Control Dyn., 2009, 32, (2), pp. 643–645.
-
4)
-
6. Shuster, M.D., Oh, S.D.: ‘Three-axis attitude determination from vector observations’, J. Guid. Control Dyn., 1981, 4, (1), pp. 70–77.
-
5)
-
19. Bar-Itzhack, I.Y.: ‘REQUEST: a recursive QUEST algorithm for sequential attitude determination’, J. Guid. Control Dyn., 1996, 19, (5), pp. 1034–1038.
-
6)
-
26. Rong, H.L., Lv, J.D., Peng, C.Y., et al: ‘Dynamic regulation of the weights of request based on the Kalman filter and an artificial neural network’, IEEE Sens. J., 2016, 16, (23), pp. 8597–8607.
-
7)
-
21. Choukroun, D.: ‘Novel methods for attitude determination using vector observations’. , Technion-Israel Institute, 2003.
-
8)
-
30. Ricci1, L., Formica, D.: ‘Dynamic accuracy assessment of data–fusion techniques for wearable, inertial and magnetic based human motion capture’. Proc. IEEE Conf. Sensors, Valencia, Spain, November 2014, pp. 2215–2218.
-
9)
-
31. Sabatini, A.M.: ‘Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing’, IEEE Trans. Biomed. Eng., 2006, 53, (7), pp. 1346–1356.
-
10)
-
24. Königseder, F., Kemmetmüller, W., Kugi, A.: ‘Attitude estimation using redundant inertial measurement units for the control of a camera stabilization platform’, IEEE Trans. Control Syst. Technol., 2016, 24, (5), pp. 1837–1844.
-
11)
-
13. Sessa, S., Zecca, M., Lin, Z., et al: ‘A methodology for the performance evaluation of inertial measurement units’, J. Intell. Robot. Syst., 2013, 71, pp. 143–157.
-
12)
-
23. Jung, P.G., Oh, S., Lim, G., et al: ‘A mobile motion capture system based on inertial sensors and smart shoes’, J. Dyn. Syst. Meas. Control, 2014, 136, pp. 0110021–0110029.
-
13)
-
2. Crassidis, J., Markley, L.: ‘Three-axis attitude estimation using rate-integrating gyroscope’, J. Guid. Control Dyn., 2016, 39, (7), pp. 1–14.
-
14)
-
25. Edrisi, F., Majd, V.J.: ‘Attitude estimation of an accelerated rigid body with sensor fusion based-on switching extended Kalman filter’. Proc. Conf. AI & Robotics, Qazvin, Iran, April 2015, pp. 1–6.
-
15)
-
12. Sabatini, A.M.: ‘Variable-state-dimension Kalman-based filter for orientation determination using inertial and magnetic sensors’, Sensors, 2012, 12, pp. 8491–8506.
-
16)
-
16. Jin, M., Zhao, J.G., Jin, J., et al: ‘The adaptive Kalman filter based on fuzzy logic for inertial motion capture system’, Measurement, 2014, 49, pp. 196–204.
-
17)
-
14. Ren, H., Kazanzides, P.: ‘Investigation of attitude tracking using an integrated inertial and magnetic navigation system for hand-held surgical instruments’, IEEE/ASME Trans. Mechatronics, 2012, 17, (2), pp. 210–217.
-
18)
-
7. Fourati, H., Manamanni, N., Afilal, L., et al: ‘Complementary observer for body segments motion capturing by inertial and magnetic sensors’, IEEE/ASME Trans. Mechatronics, 2014, 19, (1), pp. 149–157.
-
19)
-
8. Yun, X.P., Bachmann, E.R., McGhee, R.B.: ‘A simplified quaternion-based algorithm for orientation estimation from earth gravity and magnetic field measurements’, IEEE Trans. Instrum. Meas., 2008, 57, (3), pp. 638–650.
-
20)
-
9. Madgwick, S.O.H., Harrison, A.J.L., Vaidyanathan, R.: ‘Estimation of IMU and MARG orientation using a gradient descent algorithm’. Proc. Int. Conf. Rehabilitation Robotics, Zurich, Switzerland, June 2011, pp. 1–7.
-
21)
-
5. Cordova Alarcon, J.R., Rodriguez Cortes, H., Vivas, E.V.: ‘Extended Kalman filter tuning in attitude estimation from inertial and magnetic field measurements’. Proc. 6th Int. Conf. Electrical Engineering, Computing Science and Automatic Control, Toluca, Mexico, January 2009, pp. 1–6.
-
22)
-
1. Oliver, J., Woodman, O.J.: ‘An introduction to inertial navigation’ (University of Cambridge, Cambridge, UK, 2007), pp. 21–23.
-
23)
-
28. Campolo, D., Taffoni, F., Formica, D., et al: ‘Inertial-magnetic sensors for assessing spatial cognition in infants’, IEEE Trans. Biomed. Eng., 2011, 58, (5), pp. 1499–1503.
-
24)
-
10. Bergamini, E., Ligorio, G., Summa, A., et al: ‘Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: accuracy assessment in manual and locomotion tasks’, Sensors, 2014, 14, pp. 18625–18649.
-
25)
-
17. Sabatelli, S., Galgani, M., Fanucci, L., et al: ‘A double stage Kalman filter for sensor fusion and orientation tracking in 9D IMU’. Proc. IEEE Conf. Sensors Applications Sympo., Brescia, Italy, Feb. 2012, pp. 1–5.
-
26)
-
4. Li, J., Dang, P., Gu, B.: ‘A general Euler angle error model of strapdown inertial navigation systems’, Appl. Sci., 2018, 8, (1), pp. 74–91.
-
27)
-
18. Yun, X.P., Calusdian, J., Bachmann, E.R., et al: ‘Estimation of human foot motion during normal walking using inertial and magnetic sensor measurements’, IEEE Trans. Instrum. Meas., 2012, 61, (7), pp. 2059–2072.
-
28)
-
20. Choukroun, D., Bar-Itzhack, I.Y., Oshman, Y.: ‘Optimal-REQUEST algorithm for attitude determination’, J. Guid. Control Dyn., 2004, 27, (3), pp. 418–425.
-
29)
-
15. Yun, X.P., Bachmann, E.R.: ‘Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking’, IEEE Trans. Robot., 2006, 22, (6), pp. 1216–1227.
-
30)
-
3. Bortz, J.E.: ‘A new mathematical formulation for strapdown inertial navigation’, IEEE Trans. Aerosp. Electron. Syst., 1971, AES-7, (1), pp. 61–66.
-
31)
-
11. Brückner, H.P., Krüger, B., Blume, H.: ‘Reliable orientation estimation for mobile motion capturing in medical rehabilitation sessions based on inertial measurement units’, Microelectron. J., 2014, 45, pp. 1603–1611.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2017.0383
Related content
content/journals/10.1049/iet-smt.2017.0383
pub_keyword,iet_inspecKeyword,pub_concept
6
6