Your browser does not support JavaScript!

access icon free Adaptive regulation of the weights of REQUEST used to magnetic and inertial measurement unit based on hidden Markov model

An attitude algorithm is used by a given magnetic and inertial measurement unit (MIMU) for weight fusion of the outputs of gyroscope and the outputs of the subunit constructed by accelerometer and magnetometer for attitude calculation of a rigid body. It has been proved that the weight assigned to the outputs of gyroscope determines the overall performances of attitude algorithm. A new weight adaptive regulation method based on Kalman filter and hidden Markov model is proposed, and then a new attitude algorithm is constructed by the integration of that method with recursive quaternion estimation algorithm. The authors’ attitude algorithm is compared with some other related attitude algorithms in their experiments. With the outputs of the sensors in MTi as the inputs of the new attitude algorithm, the maximum attitude estimation errors in response to three-dimensional random movements and the changes of their amplitudes are 2.85° and 6.82°, respectively, and the Allan variance of attitude drift in response to motionless conditions is 2.1×10−4°. Other attitude algorithms cannot simultaneously achieve similar dynamic and similar static performances comparing to their attitude algorithm. The results validate the overall performance improvement of their attitude algorithm.


    1. 1)
      • 27. Meng, Y., Gao, S., Zhong, Y., et al: ‘Covariance matching based adaptive unscented Kalman filter for direct filtering in INS/GNSS integration’, Acta Astronaut., 2016, 120, pp. 171181.
    2. 2)
      • 29. Godwin, A., Agnew, M., Stevenson, J.: ‘Accuracy of inertial motion sensors in static, quasistatic, and complex dynamic motion’, J. Biomech. Eng., 2009, 131, pp. 11450111145015.
    3. 3)
      • 22. Shuster, M. D.: ‘Filter QUEST or REQUEST’, J. Guid. Control Dyn., 2009, 32, (2), pp. 643645.
    4. 4)
      • 6. Shuster, M.D., Oh, S.D.: ‘Three-axis attitude determination from vector observations’, J. Guid. Control Dyn., 1981, 4, (1), pp. 7077.
    5. 5)
      • 19. Bar-Itzhack, I.Y.: ‘REQUEST: a recursive QUEST algorithm for sequential attitude determination’, J. Guid. Control Dyn., 1996, 19, (5), pp. 10341038.
    6. 6)
      • 26. Rong, H.L., Lv, J.D., Peng, C.Y., et al: ‘Dynamic regulation of the weights of request based on the Kalman filter and an artificial neural network’, IEEE Sens. J., 2016, 16, (23), pp. 85978607.
    7. 7)
      • 21. Choukroun, D.: ‘Novel methods for attitude determination using vector observations’. Ph.D. thesis, Technion-Israel Institute, 2003.
    8. 8)
      • 30. Ricci1, L., Formica, D.: ‘Dynamic accuracy assessment of data–fusion techniques for wearable, inertial and magnetic based human motion capture’. Proc. IEEE Conf. Sensors, Valencia, Spain, November 2014, pp. 22152218.
    9. 9)
      • 31. Sabatini, A.M.: ‘Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing’, IEEE Trans. Biomed. Eng., 2006, 53, (7), pp. 13461356.
    10. 10)
      • 24. Königseder, F., Kemmetmüller, W., Kugi, A.: ‘Attitude estimation using redundant inertial measurement units for the control of a camera stabilization platform’, IEEE Trans. Control Syst. Technol., 2016, 24, (5), pp. 18371844.
    11. 11)
      • 13. Sessa, S., Zecca, M., Lin, Z., et al: ‘A methodology for the performance evaluation of inertial measurement units’, J. Intell. Robot. Syst., 2013, 71, pp. 143157.
    12. 12)
      • 23. Jung, P.G., Oh, S., Lim, G., et al: ‘A mobile motion capture system based on inertial sensors and smart shoes’, J. Dyn. Syst. Meas. Control, 2014, 136, pp. 01100210110029.
    13. 13)
      • 2. Crassidis, J., Markley, L.: ‘Three-axis attitude estimation using rate-integrating gyroscope’, J. Guid. Control Dyn., 2016, 39, (7), pp. 114.
    14. 14)
      • 25. Edrisi, F., Majd, V.J.: ‘Attitude estimation of an accelerated rigid body with sensor fusion based-on switching extended Kalman filter’. Proc. Conf. AI & Robotics, Qazvin, Iran, April 2015, pp. 16.
    15. 15)
      • 12. Sabatini, A.M.: ‘Variable-state-dimension Kalman-based filter for orientation determination using inertial and magnetic sensors’, Sensors, 2012, 12, pp. 84918506.
    16. 16)
      • 16. Jin, M., Zhao, J.G., Jin, J., et al: ‘The adaptive Kalman filter based on fuzzy logic for inertial motion capture system’, Measurement, 2014, 49, pp. 196204.
    17. 17)
      • 14. Ren, H., Kazanzides, P.: ‘Investigation of attitude tracking using an integrated inertial and magnetic navigation system for hand-held surgical instruments’, IEEE/ASME Trans. Mechatronics, 2012, 17, (2), pp. 210217.
    18. 18)
      • 7. Fourati, H., Manamanni, N., Afilal, L., et al: ‘Complementary observer for body segments motion capturing by inertial and magnetic sensors’, IEEE/ASME Trans. Mechatronics, 2014, 19, (1), pp. 149157.
    19. 19)
      • 8. Yun, X.P., Bachmann, E.R., McGhee, R.B.: ‘A simplified quaternion-based algorithm for orientation estimation from earth gravity and magnetic field measurements’, IEEE Trans. Instrum. Meas., 2008, 57, (3), pp. 638650.
    20. 20)
      • 9. Madgwick, S.O.H., Harrison, A.J.L., Vaidyanathan, R.: ‘Estimation of IMU and MARG orientation using a gradient descent algorithm’. Proc. Int. Conf. Rehabilitation Robotics, Zurich, Switzerland, June 2011, pp. 17.
    21. 21)
      • 5. Cordova Alarcon, J.R., Rodriguez Cortes, H., Vivas, E.V.: ‘Extended Kalman filter tuning in attitude estimation from inertial and magnetic field measurements’. Proc. 6th Int. Conf. Electrical Engineering, Computing Science and Automatic Control, Toluca, Mexico, January 2009, pp. 16.
    22. 22)
      • 1. Oliver, J., Woodman, O.J.: ‘An introduction to inertial navigation’ (University of Cambridge, Cambridge, UK, 2007), pp. 2123.
    23. 23)
      • 28. Campolo, D., Taffoni, F., Formica, D., et al: ‘Inertial-magnetic sensors for assessing spatial cognition in infants’, IEEE Trans. Biomed. Eng., 2011, 58, (5), pp. 14991503.
    24. 24)
      • 10. Bergamini, E., Ligorio, G., Summa, A., et al: ‘Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: accuracy assessment in manual and locomotion tasks’, Sensors, 2014, 14, pp. 1862518649.
    25. 25)
      • 17. Sabatelli, S., Galgani, M., Fanucci, L., et al: ‘A double stage Kalman filter for sensor fusion and orientation tracking in 9D IMU’. Proc. IEEE Conf. Sensors Applications Sympo., Brescia, Italy, Feb. 2012, pp. 15.
    26. 26)
      • 4. Li, J., Dang, P., Gu, B.: ‘A general Euler angle error model of strapdown inertial navigation systems’, Appl. Sci., 2018, 8, (1), pp. 7491.
    27. 27)
      • 18. Yun, X.P., Calusdian, J., Bachmann, E.R., et al: ‘Estimation of human foot motion during normal walking using inertial and magnetic sensor measurements’, IEEE Trans. Instrum. Meas., 2012, 61, (7), pp. 20592072.
    28. 28)
      • 20. Choukroun, D., Bar-Itzhack, I.Y., Oshman, Y.: ‘Optimal-REQUEST algorithm for attitude determination’, J. Guid. Control Dyn., 2004, 27, (3), pp. 418425.
    29. 29)
      • 15. Yun, X.P., Bachmann, E.R.: ‘Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking’, IEEE Trans. Robot., 2006, 22, (6), pp. 12161227.
    30. 30)
      • 3. Bortz, J.E.: ‘A new mathematical formulation for strapdown inertial navigation’, IEEE Trans. Aerosp. Electron. Syst., 1971, AES-7, (1), pp. 6166.
    31. 31)
      • 11. Brückner, H.P., Krüger, B., Blume, H.: ‘Reliable orientation estimation for mobile motion capturing in medical rehabilitation sessions based on inertial measurement units’, Microelectron. J., 2014, 45, pp. 16031611.

Related content

This is a required field
Please enter a valid email address